https://www.epo.org/en/node/erik-loopstra-and-vadim-banine

Erik Loopstra and Vadim Banine

EUV lithography for smaller, more powerful microchips

Category
Industry
Technical field
Semiconductors
Company
ASML Netherlands BV
The next generation of microprocessors is being produced with European hi-tech thanks to key inventions in extreme ultraviolet lithography (EUVL) manufacturing by Dutch engineer Erik Loopstra and Dutch-Russian physicist Vadim Banine.

Winners of the European Inventor Award 2018 in the Popular Prize category

The next generation of microprocessors is being produced with European hi-tech thanks to key inventions in extreme ultraviolet lithography (EUVL) manufacturing by Dutch engineer Erik Loopstra and Dutch-Russian physicist Vadim Banine. Patented and brought to market by chip equipment manufacturer ASML, their technology uses high-energy lasers to achieve nanoscale details, thereby producing smaller, faster and more powerful semiconductors.

The computing power of microchips, measured in the density of transistors packed onto a single chip, has doubled every two years since the 1960s. While chips once contained thousands of transistors, now billions fit onto them. This evolution fulfils Moore's law, formulated by Intel Corporation co-founder Gordon Moore.

But, in recent years, the microchip industry has been approaching a plateau. The wavelength of laser light that is used to etch detailed transistor patterns onto silicon chips has been reaching its physical limit - portending an end to Moore's law.

Enter Banine and Loopstra at lithography systems company ASML. Over the course of 20 years, the two used their skills as physicist and system architect respectively to break the wavelength barrier. Their patented inventions in EUVL reduce radiation wavelength by a factor of 14 to only 13.5 nanometres, well below the one-time "wall" of 193 nanometres. Global microchip manufacturers are now adopting ASML's EUVL technology for large-scale production.

Societal benefit

Smaller and more powerful microchips are the key to new applications in fields such as communications, healthcare and transportation. EUVL will be the enabling technology behind next-generation chips that feature details at a scale of seven and five nanometres. To put that into perspective, five nanometres is twice the thickness of a strand of DNA; a human hair is 20 000 times thicker than five nanometres.

Besides next-generation smartphones and tablet computers, this computing power will support smaller and more powerful medical implants, wearable electronics and "lab-on-a-chip" devices.

ASML's advanced EUVL platform has helped to strengthen Europe's technology foothold. The region surrounding the Dutch city of Eindhoven, where ASML is based, is known as the Brainport region. In 2011, the Intelligent Community Forum named it the "smartest region in the world" for creating synergies between enterprises and think tanks, including the Eindhoven University of Technology (TU/e).

Economic benefit

Patent holder ASML now offers the team's inventions in a complete product. Four of the world's largest semiconductor companies - Samsung, TSMC, Intel and GLOBALFOUNDRIES - will adopt ASML's EUVL platform in the next two years.

ASML is already the world's largest lithography systems company, with an estimated share of market revenue of over 85% in 2018. Founded in 1984, the publicly traded company employed 19 200 people worldwide and reported sales of EUR 9 billion and profits of over EUR 2 billion in 2017.

Fuelled by insatiable demand for microchips, the global semiconductor industry is booming. In 2017, worldwide sales topped EUR 334 billion, exceeding a 20% year-on-year growth rate, as reported by the Semiconductor Industry Association. Analysts at MarketsandMarkets expect the photolithography equipment market to reach EUR 6.5 billion by 2020, with the highest growth in EUVL equipment.

How it works

Microchips are created by "photolithography", a production method using lasers to etch miniscule patterns for transistors and switches onto silicon wafers. But the level of detail and ease of manufacturing are limited by current ultraviolet lithography, which requires extra manufacturing steps - masking and special lenses - to produce chip features at scales below 45 nanometres. 

Banine, Loopstra and their team developed an EUVL process to deliver a much shorter radiation wavelength that almost falls within the X-ray spectrum. Instead of using direct laser light to etch the silicon, EUVL aims a high-powered laser at tiny droplets of tin. Exposed to the laser's heat, the metal droplets melt into gleaming plasma and emit radiation in the "extreme ultraviolet" spectrum at a wavelength of only 13.5 nanometres. This wavelength is perfect for etching ultra-delicate structures onto silicon.

To do this, the inventors directed the radiation via reflectors - ultra-smooth mirrors with flawless surfaces - for which their German partner, optical manufacturer ZEISS, invented an entirely new material. And because extreme ultraviolet light can be absorbed even by air, the team had to design a vacuum environment to do so. They also had to reduce contamination - caused by lumps of material 1 000 times thinner than human hair - to almost zero. Just one dust particle could render a microchip useless.

In production lines, the patented technology will not be used to create entire chips, but only for the most detailed and precise layers. These layers will then be assembled onto finished semiconductors with so-called "exposure layers", about 100 per chip, created with other types of lithography.

The inventors

Since joining ASML in 1991, Erik Loopstra has played a key role in bringing EUVL solutions to market in a process that has involved over 1 000 in-house experts. "Innovation is one per cent inspiration and ninety-nine per cent perspiration," he says, quoting Thomas Edison. "Nobody would invest so much time and money without being sure that it could be worthwhile at the end."

As his innovative ambitions grew, so did his department. When the native of Lillestrøm, Norway, started working at ASML over 25 years ago, the development team consisted of only 100 people. Today, this branch has grown to 2 000 employees, with Loopstra also working on next-generation EUV optical systems at ASML's supplier ZEISS in Germany.

Loopstra's work has yielded 65 granted European patents, as well as the Dutch Society for Precision Engineering Martin van den Brink Award in 2012. In his free time, the inventor takes breaks from high-powered lasers by retreating to his workshop, where he crafts wood furniture.

Vadim Banine is a native of Moscow, Russia, where he earned a degree in physics from the Moscow Institute of Physics and Technology in 1988. He joined ASML in 1996 after spending two years as a postdoctoral researcher at the Laboratory of Heat and Mass Transfer at TU/e, where he also earned his PhD. He has since contributed scientific insights behind the breakthroughs in EUVL technology.

Today, he is equally at home in the world of research and enterprise. He became ASML's Director of Research in 2010 and was appointed Professor for Physics and Technology of EUV Lithography at the TU/e Department of Applied Physics in 2013. Banine is named on 45 granted European patents and has authored over 50 scientific publications.

"Patents freed me. They guaranteed that I could focus 100% on my work, not being worried about anything else. That's really great," says Banine. He now participates in ASML's co‑operation with a wide range of industrial and research parties to test the optical elements and plasma system at the EUVL system's core.

Did you know?

Patented microprocessor innovations have done well at the European Inventor Award since day one. Loopstra and Banine are the latest in a series of finalists and winners that started at the very first European Inventor Award in 2006, when the legendary 4004 microchip earned its inventor Federico Faggin the Lifetime achievement award. That same year, top honours also went to DNA-analysis microchips from Stephen P.A. Fodor and team, who won the award in the "Small and medium-sized enterprises" category.

In 2015, Swiss analytic chemist and nanoscientist Andreas Manz received the Lifetime achievement award for shrinking a chemistry laboratory down to fit on a microchip-sized wafer. One year before, a microprocessor-equipped USB stick that decodes a patient's DNA within minutes earned British scientist Christofer Toumazou the award in the "Research" category.

Other finalists who pushed the boundaries in microprocessor design include UK engineer Sophie Wilson with her ultra-efficient ARM processors for mobile devices (2013, "Lifetime achievement" category). And in 2016, Portuguese inventors Elvira Fortunato and Rodrigo Martins ranked among the finalists in the "Research" category for developing paper-based microprocessors.

Contact

European Inventor Award and Young Inventors Prize queries:

european-inventor@epo.org Subscribe to the European Inventor Award newsletter

Media-related queries:

Contact our Press team
#InventorAward #YoungInventors