
BESCHWERDEKAMMERN
DES EUROPÄISCHEN
PATENTAMTS

BOARDS OF APPEAL OF
THE EUROPEAN PATENT
OFFICE

CHAMBRES DE RECOURS
DE L’OFFICE EUROPEEN
DES BREVETS

EPA Form 3030 06.03

C4201.D

Internal distribution code:
(A) [] Publication in OJ
(B) [] To Chairmen and Members
(C) [] To Chairmen
(D) [X] No distribution

Datasheet for the decision
of 17 September 2010

Case Number: T 1714/06 - 3.5.01

Application Number: 02002801.5

Publication Number: 1347375

IPC: G06F 9/44, G06F 9/46

Language of the proceedings: EN

Title of invention:
Method and apparatus for parallel distributed compilation

Applicant:
SAP AG

Opponent:
-

Headword:
Parallel make/SAP AG

Relevant legal provisions:
EPC Art. 52(1)

Relevant legal provisions (EPC 1973):
EPC Art. 54(1),(2)

Keyword:
"Novelty (all requests): no"

Decisions cited:
-

Catchword:
-

 Europäisches
Patentamt European

Patent Office
 Office européen

des brevets b

 Beschwerdekammern Boards of Appeal Chambres de recours

C4201.D

 Case Number: T 1714/06 - 3.5.01

D E C I S I O N
of the Technical Board of Appeal 3.5.01

of 17 September 2010

 Appellant:

SAP AG
Dietmar-Hopp-Allee 16
69190 Walldorf (DE)

 Representative:

Schiuma, Daniele Wolfgang
Müller-Boré & Partner
Grafinger Strasse 2
81671 München (DE)

 Decision under appeal: Decision of the Examining Division of the
European Patent Office posted 21 June 2006
refusing European patent application
No. 02002801.5 pursuant to
Article 97(1) EPC 1973.

 Composition of the Board:

 Chairman: S. Wibergh
 Members: R. R. K. Zimmermann
 G. Weiss

 - 1 - T 1714/06

C4201.D

Summary of Facts and Submissions

I. European application number 02 002 801.5, published as

EP 1 347 375 and having the filing date 7 February 2002,

is directed to a method and apparatus for parallel

distributed compilation.

The examining division refused the application. The

decision was announced in oral proceedings on

14 October 2005 and posted in writing on 21 June 2006.

According to the grounds for the decision, the

application did not comply with the requirements of

novelty and inventive step in the light of the

following publication (document D1):

Charles J. Fleckenstein and David Hemmendinger: "Using

a Global Name Space for Parallel Execution of UNIX

Tools", in Communications of the ACM, ACM Press New

York, 32(1989)September, no.9, pages 1085-1090.

II. By letters dated and received 21 August 2006 and

20 October 2006, respectively, the appellant (applicant)

lodged an appeal against the decision and filed a

statement setting out the grounds of appeal.

III. In a provisional opinion communicated to the appellant

under Rule 100(2) EPC, the Board indicated that it

concurred with the examining division concerning lack

of novelty. In respect of the auxiliary request the

Board raised the objection of added subject matter.

IV. By letters dated 18 November 2009 and 5 August 2010,

the appellant filed amended claims and made further

submissions in support of its case.

 - 2 - T 1714/06

C4201.D

V. In oral proceedings taking place before the Board on

17 September 2010, the matter was discussed with the

appellant.

VI. The appellant has requested that the decision under

appeal should be set aside and a patent be granted on

the basis of claims 1 to 8 filed with letter dated

21 August 2006 (main request) or in the alternative on

the basis of claims 1 to 6 submitted at the oral

proceedings (new main request) or on the basis of

claims according to the auxiliary requests 1 to 4 filed

with letter dated 5 August 2010. Claim 1 according to

each of these requests reads as follows:

Main request:

"1. Computer-implemented method (400) for controlling a

building process of a target program (230), the

building process with compiling source code modules

(211, 212, 213) into object code modules (221, 222,

223) and linking the object code modules (221, 222,

223) to the target program (230),

the method (400) comprising the following steps:

in repetitions for all modules (401), triggering (410,

01, 07, 13) for each module a pseudo-compiler (325)

from a predefined scheduler (310) and acknowledging

(420, 03, 09, 15) receipt to the scheduler (310),

wherein said pseudo-compiler (325) appears to the

scheduler (310) as a compiler and operates like a

dispatcher that organizes parallel code processing from

a serial schedule;

triggering (430, 02, 08, 14) a plurality of compilers

(321, 322, 323) from the pseudo-compiler (325) using

the serial schedule to operate the compilers to

 - 3 - T 1714/06

C4201.D

independently compile (05, 11, 17) the source code

modules (211, 212, 213) to the object code modules

(221, 222, 223) in parallel;

acknowledging (440, 19, 20, 21) from the compilers

(321, 322, 323) to a synchronizer (335); and

triggering (450, 22/23) a linker (330) from the

scheduler (310) when the synchronizer (335) has

received the acknowledgements (19, 20, 21) from the

compilers (321, 322, 321)."

New main request, claim 1 differs from claim 1 above

only in the third and fourth paragraphs (differences

underlined):

"1. … in repetitions for all modules (401), triggering

(410, 01, 07, 13) for each module a pseudo-compiler

(325) from a predefined serial scheduler (310) and

acknowledging (420, 03, 09, 15) receipt to the

scheduler (310) by the pseudo-compiler (325), wherein

said pseudo-compiler (325) appears to the scheduler

(310) as a compiler and operates like a dispatcher that

organizes parallel code processing from a serial

schedule without changing said serial schedule;

triggering (430, 02, 08, 14) a plurality of compilers

(321, 322, 323) from the pseudo-compiler (325) using

the serial schedule wherein the pseudo-compiler (325)

buffers trigger commands from the scheduler (317) in a

buffer (326) and forwards the buffered commands as

predefined to compilers so as to operate the compilers

to independently compile (05, 11, 17) the source code

modules (211, 212, 213) to the object code modules

(221, 222, 223) in parallel; … ."

 - 4 - T 1714/06

C4201.D

Auxiliary request 1, claim 1 differs from claim 1 of

the main request only in the third paragraph

(differences underlined):

"1. … in repetitions for all modules (401), triggering

(410, 01, 07, 13) for each module a pseudo-compiler

(325) from a predefined scheduler (310) and

acknowledging (420, 03, 09, 15) receipt to the

scheduler (310) by the pseudo-compiler (325),

wherein said pseudo-compiler (325) appears to the

scheduler (310) as a compiler and operates like a

dispatcher that organizes parallel code processing from

a serial schedule; … ."

Auxiliary request 2, claim 1 differs from claim 1 of

the main request only by amendments of the third and

last paragraphs (differences underlined):

"1. … in repetitions for all modules (401), triggering

(410, 01, 07, 13) for each module a pseudo-compiler

(325) from a predefined scheduler (310) and

acknowledging (420, 03, 09, 15) receipt to the

scheduler (310) by the pseudo-compiler (325), wherein

said pseudo-compiler (325) appears to the scheduler

(310) as a compiler and operates like a dispatcher that

organizes parallel code processing from a serial

schedule without changing said serial schedule;

…

triggering (450, 22/23) a linker (330) from the

scheduler (310) when the synchronizer (335) has

received the acknowledgements (19, 20, 21) from the

compilers (321, 322, 321),

wherein said pseudo-compiler (324) and said scheduler

(310) are separate service components."

 - 5 - T 1714/06

C4201.D

Auxiliary request 3, claim 1 differs from claim 1 of

the main request only by amendments of the third

paragraph (differences underlined):

"1. … in repetitions for all modules (401), triggering

(410, 01, 07,13) for each module a pseudo-compiler

(325) from a predefined scheduler (310) and

substantially simultaneously acknowledging (420, 03,

09, 15) receipt to the scheduler (310) by the

pseudo-compiler (325), so that for said scheduler it

appears that compiling has been completed, wherein said

pseudo-compiler (325) appears to the scheduler (310) as

a compiler and operates like a dispatcher that

organizes parallel code processing from a serial

schedule; … ."

Auxiliary request 4:

"1. Computer (900) for controlling a building process

of a target program (230), wherein source code modules

(211, 212, 213) are compiled into object code modules

(221, 222, 223) and object code modules (221, 222, 223)

are linked to the target program (230), the computer

(900) comprising:

a pseudo-compiler (325) that is triggered (01, 07, 13)

from a predefined scheduler (310) and that

substantially simultaneously acknowledges (03, 09, 15)

to the scheduler (310), so that for said scheduler it

appears that compiling has been completed, wherein said

pseudo-compiler (325) appears to the scheduler (310) as

a compiler and operates like a dispatcher that

organizes parallel code processing from a serial

schedule;

a plurality of compilers (321, 322, 323) triggered (02,

08, 14) from the pseudo-compiler (325) using the serial

schedule to operate the compilers to independently

 - 6 - T 1714/06

C4201.D

compile (05, 11, 17) the source code modules (211,

212,213) to the object code modules (221, 222, 223) in

parallel, the compilers (321, 322, 323) acknowledging

(19, 20, 21) to a synchronizer (335); and

a linker (330) triggered (22/23) from the scheduler

(310) when the synchronizer (335) has received the

acknowledgements (19, 20, 21) from the compilers (321,

322, 321)."

VII. The appellant's arguments in support of the invention

may be summarised as follows:

The amendments requested were disclosed in the

application as filed. In particular the pseudo-compiler

and the scheduler were disclosed as separate service

components at p. 2, line 57 and p. 5, lines 47 to 50

and in figure 3 of the application as filed. The

auxiliary requests clarified and emphasised that any

conventional serial scheduler could be used without

change for compiling source code modules in a parallel

process by using the pseudo-compiler of the invention

as an intermediary between the serial scheduler and a

plurality of compilers.

The term "service component" was used in the claims to

refer to functions, processes, routines etc in a very

general way, independently of any reference to a

particular programming language. When the application

referred to a computer program to be executed on a

computer, this was not a contradiction to claiming the

pseudo-compiler and the scheduler as separate

components. All service components - the scheduler, the

pseudo-compiler, the compiler, the synchroniser, and

the linker − should be considered as callable routines

 - 7 - T 1714/06

C4201.D

performing specific tasks, possibly returning data

after execution.

Furthermore, the invention was novel and inventive over

the method of document D1. The functionality and

structure of controlling the building process was

completely different from the prior art method. The

invention was distinguished from the prior art at least

by the following three conceptual differences:

acknowledging receipt by the intermediary pseudo-

compiler to the scheduler, the acknowledgements

appearing to the scheduler as if the compilations had

been completed, and triggering a plurality of compilers

from the intermediary pseudo-compiler using the serial

scheduler to independently compile the source code

modules in parallel to object code modules.

By using a pseudo-compiler which appeared to the

scheduler like a compiler it was neither required to

change the scheduler nor to know any details about the

scheduler. The compiler/linker interface was mimicked

by the pseudo-compiler. By means of the pseudo-compiler

as a "middleman" between scheduler and compiler/linker,

parallelisation could be achieved in any given build-

environment and with any normal serial scheduler-

compiler/linker combination, without changing the

scheduler or the compiler/linker.

The system architecture which was the subject matter of

auxiliary request 4 was characterised by structural

components, such as the pseudo-compiler, the plurality

of compilers and the linker. Document D1 neither

disclosed the structure of the system nor the specific

interactions between the components.

 - 8 - T 1714/06

C4201.D

In particular, acknowledging receipt was an important

feature of the invention. The step of acknowledging

receipt meant that information was sent and received

which indicated that the compilation had been

successfully performed. If the compilation failed, no

acknowledgement would be passed or a failure notice

would be transmitted. The invocation or call of the OUT

operation in document D1, and more generally the

switching of the thread of execution from the scheduler

to the compiler could not be seen as an acknowledgement

in terms of the present invention.

The term "triggering" as used in the claims should be

understood as a signal or as an event initiating or

starting an action or operation of some kind. The

invention comprised two distinctive steps of triggering

the compilation of a source code module, namely the

step of triggering the pseudo-compiler by the scheduler

and the step of triggering one of the parallel

compilers by the pseudo-compiler for each module to be

compiled. Document D1 did not disclose, neither

explicitly nor implicitly, the presence of said second

triggering step. The IN and OUT operations merely

passed commands and distributed work in a convenient

way. Only if the OUT and IN operations were both

carried out a compilation was performed, i.e. a

compiler was triggered. Invoking the OUT operation only

triggered the worker process used for compiling, but

not the compiling process itself. Such an operation did

thus not appear as a conventional compiler process to

the scheduler. The examining division, therefore, was

wrong to regard the OUT operation as a pseudo-compiler

in terms of the present application.

 - 9 - T 1714/06

C4201.D

Reasons for the Decision

1. The appeal, although admissible, has to be dismissed

since none of the requests justifies the reversal of

the decision under appeal. The main request and

auxiliary requests 1 to 4 do not comply with the

requirement of novelty (Articles 52(1) EPC and 54(1)

and (2) EPC 1973). The "new main request" is not

admitted to the proceedings for the reasons given

further below.

2. Main request

2.1 Claim 1 of the main request is not allowable for lack

of novelty in respect of prior art document D1. This

document discloses a computer-implemented method, "the

parallel make utility", for controlling a building

process of a target program (see D1, p. 1086, right-

hand column, line 47, section "PARALLEL MAKE UTILITY").

The building process includes compiling source code

modules, viz. the "files to compile" defined by a

variable SOURCES, into object code modules, viz. the

files compiled, and linking the object code modules to

the target program ("the executable image").

A "master process" (see D1, page 1087, right-hand

column, lines 6 ff. and the code at lines 20 to 40) in

combination with the tuple-space management of the

"Linda support environment" (see D1, page 1086, left-

hand column, line 25 to p. 1086, right-hand column,

line 46) implements all the functions which claim 1

allocates to service components like scheduler and

pseudo-compiler.

 - 10 - T 1714/06

C4201.D

2.2 Starting with the pseudo-compiler of the present

invention it is first to be noted that this expression

is used in a non-standard manner. The pseudo-compiler

is not intended to, and does not, generate code in any

pseudo or intermediate language. In the light of the

description, the pseudo-compiler is rather to be

understood as a component interfacing with the

scheduler like a single compiler (compiler 320 in

figure 2, see A1-application, section 0042) but

operating like a dispatcher for parallel code

processing.

2.3 In a first program block including a while(more_files)-

loop (see the code in D1 at page 1087, right-hand

column, lines 20 to 40) the master process scans a make

file that comprises a linear list of file names for

compilation (defined by the variable SOURCES, see the

make file in D1, p. 1087, the paragraph bridging the

two columns). This first program block, therefore,

operates as a scheduler assigning files for compilation

according to a serial schedule.

2.4 For each name found in the make file the master process

calls an OUT-routine, which distributes the work to be

done by "workers" in parallel processing according to a

"pool method" (see D1, p. 1087, right-hand column,

lines 6 to 18, and p. 1088, left-hand column, lines 11

to 53 with figure 1). Therefore, the OUT-routine in

combination with the Linda support environment meets

the claim definition of the pseudo-compiler as "a

dispatcher that organizes parallel code processing from

a serial scheduler".

 - 11 - T 1714/06

C4201.D

2.5 The OUT-routine can be said to "appear" to its master

process as a compiler. In fact, the make utility of

document D1 can be used for serial as well as for

parallel compilation without changing the master

process or the make algorithm, namely simply by

changing the number of available worker processes (see

figure 1 at p. 1088 of D1). Reducing the number to one

for the pool method, i.e. by providing a single worker

only, results automatically in a serial processing of

source files whereas a number of two or more workers

provides for parallel processing. The actual compiling

mode is not visible to the master process.

2.6 The OUT-routine "acknowledg[es] receipt to the

scheduler" by returning program control to the while

loop of the master process.

2.7 Furthermore, the OUT-routine (plus Linda) anticipates

the features that the pseudo-compiler is triggered by

the scheduler and triggers a plurality of compilers. By

calling the OUT-routine, the first program block passes

control to the OUT-routine and thus can be said to

"trigger" the routine.

2.8 Similarly, by creating a work tuple with the name of

the file to compile, the OUT-routine (plus Linda)

causes the worker processes to compile the files and in

this sense "triggers" the plurality of compilers.

2.9 The term triggering as used in the present claims has

to be construed in the light of the application. As

described with respect to figures 4 and 5 a "trigger"

might be buffered and temporarily stored in a queue

(see A1-publication, section 0050 ff.). The same holds

 - 12 - T 1714/06

C4201.D

for the prior art system since the tuple space

functions as a buffer for the compilation requests.

2.10 By setting appropriate flags the workers (compilers)

inform the master process that the compilation of the

respective file has been completed. The workers thus

anticipate the step of acknowledging as defined in the

penultimate paragraph of claim 1.

2.11 The master process, more precisely the second program

block of the master process, functions as a

synchroniser for the essentially independent operation

of the workers. By means of the while(num_files)-

instruction the second program block determines when

all files have been compiled and after exiting the

while loop executes the exec(link_command)-instruction.

This process synchronises the start of the linking

operation for all object modules (files compiled).

2.12 It follows that the make utility of document D1

anticipates all the definitions of claim 1 and thus

destroys the novelty of the invention.

3. Auxiliary request 1

The amendment of claim 1 merely clarifies that the step

of acknowledging receipt to the scheduler is done by

the pseudo-compiler. As already indicated above

(see 2.6) this feature is anticipated by document D1.

4. Auxiliary request 2

4.1 Auxiliary request 2 adds to claim 1 that "said pseudo-

compiler (324) and said scheduler (310) are separate

 - 13 - T 1714/06

C4201.D

service components". As indicated in the application

(see for example sections 0008, 0020, and 0029), the

"separate" components may be parts of a single computer

program. In this very sense, the different program

blocks of the master process in document D1 are also

"separate" components so that the new feature does not

distinguish the invention over the prior art.

4.2 Furthermore, according to auxiliary request 2, the

pseudo-compiler operates like a dispatcher that

organises parallel code processing from a serial

scheduler "without changing said serial schedule". As

already pointed out above, the master process in

document D1 works without any change in a serial mode

(only a single worker available) as well as in a

parallel mode (two or more workers available). In both

modes, the master process scans linearly through the

make file which stores a linear name list of files to

compile, which is indistinguishable from a serial

schedule. This feature does not contribute anything new

to the prior art.

5. Auxiliary request 3

5.1 Claim 1 of auxiliary request 3 reformulates the step of

acknowledging receipt as follows (amendment underlined):

"substantially simultaneously acknowledging receipt to

the scheduler by the pseudo-compiler, so that for the

scheduler it appears that compiling has been completed".

5.2 The OUT-routine in document D1 passes control back to

the master process without waiting for completion of

the respective compiling process. Therefore, compared

with the time for compilation, the call and the return

 - 14 - T 1714/06

C4201.D

occur almost simultaneously. The feature of

substantially simultaneous acknowledgement of receipt

is thus anticipated by the master process.

5.3 As to the second part of the amendment it is necessary

to consult the description. The scheduler as disclosed

in the application (figure 3 ff. with the corresponding

parts of the description) is actually not informed when

the compilation is completed, and it does not use such

information in any way. Instead, the compilers directly

acknowledge compilation to a synchroniser. The only

meaningful function of acknowledging receipt is to

inform the scheduler that the request (trigger) has

been received error-free and that the pseudo-compiler

is ready to receive the next request from the scheduler.

5.4 This function, however, does not distinguish the

claimed method over the prior art. The OUT-routine plus

Linda (the pseudo-compiler) adds a "work tuple" with

the name of the file to compile to the tuple space and

immediately returns control to the first program block

of the master process (the scheduler). The return to

the calling program block informs i.e. acknowledges

that the request has been received so that requests for

further files to compile can be submitted.

6. Auxiliary request 4

6.1 The subject matter of claim 1 is a computer for

controlling a building process of a target program

comprising a pseudo-compiler, a scheduler, a plurality

of compilers, synchroniser, and a linker. As follows

from the application, the term computer has to be

understood as a computer system or as a distributed

 - 15 - T 1714/06

C4201.D

network of computer systems (see for example A1-

publication, section 0012 ff.).

6.2 The appellant argued that the structure and

architecture of the computer claimed was not

anticipated by document D1. However, claim 1 does not

define the computer by structural details but by

functional features, and these are fully anticipated.

Document D1 discloses the parallel make utility as a

computer-implemented process and therefore also the

functions of the computer system implementing the

various steps of the make process. Since claim 1 of

auxiliary request 4 is merely a functional

reformulation of the method of auxiliary request 3 -

actually a one-to-one translation of the method steps

into functional features - it follows that essentially

the same reasons for lack of novelty apply to both

requests.

7. New main request

7.1 The "new main request" submitted by the appellant

during the oral proceedings is not admitted because it

is susceptible of new objections at a late stage of the

proceedings without prospects of advancing the case

towards grants of a patent.

7.2 In fact, the amendment introducing a "predefined serial

scheduler" into claim 1 cannot be derived directly and

unambiguously from the application as filed. This

problem could be circumvented by interpreting the new

feature as a simple reference to a predefined serial

schedule. Such an interpretation, however, would not

help to restore novelty since document D1 already

 - 16 - T 1714/06

C4201.D

anticipates a serial schedule for use in a parallel

make process (the "make file", see D1, p. 1087,

line 56 ff.).

8. In summary, none of the requests submitted to the Board

for consideration form a valid basis for an allowable

appeal.

Order

For these reasons it decided that:

The appeal is dismissed.

The Registrar: The Chairman:

C. Louca-Dreher S. Wibergh

