
BESCHWERDEKAMMERN 
DES EUROPÄISCHEN 
PATENTAMTS 

BOARDS OF APPEAL OF 
THE EUROPEAN PATENT 
OFFICE 

CHAMBRES DE RECOURS 
DE L’OFFICE EUROPEEN
DES BREVETS 

 

EPA Form 3030 06.03 

C6718.D 

 
Internal distribution code: 
(A) [ ] Publication in OJ 
(B) [ ] To Chairmen and Members 
(C) [X] To Chairmen 
(D) [ ] No distribution 
 
 
 

Datasheet for the decision 
of 24 November 2011 

Case Number: T 2048/07 - 3.5.06 
 
Application Number: 02021572.9 
 
Publication Number: 1403764 
 
IPC: G06F 9/45, G06F 9/44 
 
Language of the proceedings: EN 
 
Title of invention: 
Method and computer system for dynamic data type enrichment 
 
Applicant: 
SAP AG 
 
Opponent: 
- 
 
Headword: 
Dynamic data type enrichment/SAP 
 
Relevant legal provisions: 
EPC Art. 123(2) 
 
Relevant legal provisions (EPC 1973): 
EPC Art. 52, 56 
 
Keyword: 
"Further technical effect - no" 
"Inventive step - no" 
 
Decisions cited: 
G 0003/08, T 1173/97  
 
Catchword: 
Lack of a further technical effect - see Reasons  7. 



 Europäisches 
Patentamt  European  

Patent Office 
 Office européen 

des brevets b 
 

 Beschwerdekammern Boards of Appeal  Chambres de recours 
 

C6718.D 

 Case Number: T 2048/07 - 3.5.06 

D E C I S I O N  
of the Technical Board of Appeal 3.5.06 

of 24 November 2011 

 
 
 

 Appellant: 
 (Applicant) 
 

SAP AG 
Dietmar-Hopp-Allee 16 
D-69190 Walldorf   (DE) 
 

 Representative: 
 

Rocke, Carsten 
Müller-Boré & Partner 
Grafinger Straße 2 
D-81671 München   (DE) 
 

 

 Decision under appeal: Decision of the Examining Division of the 
European Patent Office posted 20 July 2007 
refusing European patent application 
No. 02021572.9 pursuant to Article 97(1) 
EPC 1973. 

 
 
 
 Composition of the Board: 
 
 Chairman: D. H. Rees 
 Members: G. Zucka 
 W. Sekretaruk 
 



 - 1 - T 2048/07 

C6718.D 

Summary of Facts and Submissions 

 

I. The appeal is against the decision by the examining 

division dispatched on 20 July 2007 to refuse European 

patent application 02021572.9 on the basis that the 

subject-matter of claim 1 in the main and in the 

auxiliary request was not inventive, Article 56 

EPC 1973. The following document was cited in the 

decision: 

 

D1: J. Kung et al., "A comparison of 4-GL development 

tools in the area of metadata and dynamic user 

interfaces", Computer Aided Systems Theory - 

Eurocast '97, pages 567-579, Springer-Verlag, 

1997. 

 

II. A notice of appeal was received on 20 September 2007, 

the appeal fee being paid on the same day. A statement 

of the grounds of the appeal was received on 

20 November 2007. 

 

III. The appellant's Main Request was that the board 

"[r]efer to the Examining Division with the provision 

to issue the Communication under Rule 51(4) EPC [1973]" 

on the basis of documents mentioned in the grounds of 

the appeal. A First and Second Auxiliary Request were 

identical to this Main Request, except for different 

claims, also filed with the grounds of the appeal. 

 

IV. The board issued a summons to oral proceedings. In an 

annex to the summons, the board set out its preliminary 

opinion on the appeal, viz. that none of the requests 

satisfied the requirements of Article 84, 52(2) and 56 

EPC. 



 - 2 - T 2048/07 

C6718.D 

 

V. During the oral proceedings, the appellant filed a new 

request, with amended claims, replacing all previously 

filed requests. 

 

VI. The appellant requests that the decision under appeal 

be set aside and that a patent be granted on the basis 

of claims 1-11 filed during the oral proceedings. The 

further text on file is: description pages 1, 4-15 as 

originally filed and pages 2, 2a, 2b, 3 filed with the 

grounds of the appeal; drawing sheets 1/4-4/4 as 

originally filed. 

 

Claim 1: 

 

"A computer-implemented method (400) for dynamic data 

type enrichment comprising the steps: 

 accessing (415), through an application 

programming interface, API, (190) by an application 

program (210), metadata (150), wherein the application 

program (210) uses at least one variable (201) being an 

'integer', 'character', or 'string' and wherein the 

application program (210) calls through the application 

programming interface(190) at least one metadata 

service (191, 192, 193) that relates to the 

corresponding variable (201); and 

 enriching the corresponding variable (201) with 

metadata (150) at runtime when the application program 

(210) is executed, wherein the metadata (150) is 

associated with a specific data type (120) defined in a 

metadata store (220) and the application program (210) 

provides a mapping (302) between the specific data type 

(120) and the corresponding variable (201), wherein to 

specify the specific data type (120), the corresponding 



 - 3 - T 2048/07 

C6718.D 

metadata (150) includes data type details (151, 152, 

153) including a text label, a range of allowed values, 

constraints or any other data that specifies the 

specific data type and wherein the data type details 

(151, 152, 153) are exposed to the application program 

(210) and its variable (201) through the API (190) in 

the form of the at least one metadata service (191, 192, 

193)" 

 

Claim 6: 

 

"A computer program product comprising instructions 

that when loaded into a memory of a computer system 

(900) cause at least one processor of the computer 

system (900) to execute the steps of anyone of the 

claims 1 to 5" 

 

Claim 7 is directed to a corresponding computer system. 

 

Claim 11 is a further method claim directed to changing 

the metadata during runtime: 

 

"A computer-implemented method for changing metadata 

(150) comprising the steps: 

 executing an application program (210) that uses: 

at least one variable (201) being an 'integer', 

'character', or 'string'; 

 at least one metadata service (191) to access the 

metadata (150) in a metadata store (220) for defining 

how the application program (210) can access metadata 

(150) at runtime; 

 a mapping (302) between the at least one variable 

and a specific data type (120) defined in a metadata 

store (210), wherein the metadata (150) is associated 



 - 4 - T 2048/07 

C6718.D 

with the specific data type (120), wherein to specify 

the specific data type (120), the corresponding 

metadata (150) includes data type details (151, 152, 

153) including a text label, a range of allowed values, 

constraints or any other data that specifies the 

specific data type and wherein the data type details 

(151, 152, 153) are exposed to the application program 

(210) and its corresponding variable (201) through the 

API (190) in the form of the at least one metadata 

service (191, 192, 193); 

 changing the metadata (150) in the metadata store 

(220) at runtime of the application program (210); and 

 using the at least one metadata service (191) in 

the application program (210) for enriching the the 

[sic] at least one corresponding variable (201) with 

the changed metadata (150) without restarting the 

application program (210)." 

 

VII. At the end of the oral proceedings, the chairman 

announced the board's decision. 

 

 

Reasons for the decision 

 

1. Reference is made to the transitional provisions in 

Article 1 of the Decision of the Administrative Council 

of 28 June 2001 on the transitional provisions under 

Article 7 of the Act revising the European Patent 

Convention of 29 November 2000, for the amended and new 

provisions of the EPC, from which it may be derived 

which Articles of the EPC 1973 are still applicable to 

the present application and which Articles of the 

EPC 2000 shall apply. 

 



 - 5 - T 2048/07 

C6718.D 

2. Admissibility of the appeal 

 

In view of the facts set out at points I and II above, 

the appeal is admissible, since it complies with the 

EPC formal admissibility requirements. 

 

3. The claimed invention 

 

Computer programs contain variables, such as "x", "y", 

"height" or "weight". In most programming languages, 

each variable is defined to have a certain "type", for 

example, "integer", "floating point", "character" or 

"boolean". Further, in some languages, variables may be 

defined with constraints specific to the program, or 

variables may be specified to be of a type which is in 

turn defined in the program to have specific 

constraints. Thus, to take a somewhat old-fashioned  

but clear example, in Pascal the programmer could 

write: 

 

var x: 1..10; 

 

to define a variable x of type integer constrained to 

belong to the "subrange" 1 to 10. Alternatively, one 

could write: 

 

type capital = 'A'..'Z'; 

var letter: capital; 

 

to define a variable "letter" of type character 

constrained to be an uppercase letter. The latter 

formulation might be used when several variables with 

the same constraints are to be defined. The constraints 

in the above examples are called "metadata", since they 



 - 6 - T 2048/07 

C6718.D 

are data about the data which the variables "x" and 

"letter" can represent. 

 

The application is concerned with such metadata, 

although it goes beyond constraints on variables to any 

data which may be associated with a class of variables 

within a program which may be defined as a "type" ("the 

corresponding metadata (150) includes data type details 

(151, 152, 153) including a text label, a range of 

allowed values, constraints or any other data that 

specifies the specific data type"). It advocates that, 

at least for some programs, when a type is defined in 

the program, such metadata should not be embedded as a 

constant in the program as in the examples above, but 

rather read into the program when it runs, as input. It 

further specifies that the mechanism for doing so be an 

"application programming interface" (API), i.e. a 

collection of standard "library" procedures. 

 

This has some advantages: the metadata, e.g. range of 

permissible values, need not be decided when the body 

of the code is written; the same code may be used for 

situations where the metadata is different, but the 

functionality is the same, i.e. the code is more 

"reusable"; the metadata may even be changed while the 

program is running - cf. claim 11. 

 

4. Amendments to the appellant's case, Rule 13 RPBA 

 

The board agrees that the amended claims constitute a 

serious attempt to remedy the deficiencies that it had 

noted, without prima facie introducing new deficiencies 

or unjustifiably delaying the procedure. The request 



 - 7 - T 2048/07 

C6718.D 

is, therefore, admitted into the appeal proceedings, 

Article 13(1) RPBA. 

 

5. Amendments, Article 123(2) EPC 

 

Claim 1 

 

The present independent claim 1 is a combination of the 

original claims 1-3 and 5-7, with the following 

additional features, which are listed together with 

their basis in the original application documents: 

 

• The method is computer-implemented 

 

This is disclosed on page 2, line 25 of the original 

description. 

 

• The at least one variable is an 'integer', 

'character', or 'string' 

 

This is disclosed on page 4, lines 13-14 of the 

original description. 

 

• To specify the specific data type, the corresponding 

metadata includes data type details including a text 

label, a range of allowed values, constraints or any 

other data that specifies the specific data type 

 

This is disclosed on page 1, lines 12-16 of the 

original description. 

 

• The data type details are exposed to the application 

program and its variable through the API in the form 

of the at least one metadata service 



 - 8 - T 2048/07 

C6718.D 

 

This is disclosed on page 7, lines 13-17 of the 

original description. 

 

The board concludes that the present claim 1 contains 

no added subject-matter (Article 123(2) EPC). 

 

Claims 6, 7, 11 

 

The present independent claims 6, 7 and 11 contain no 

added subject matter, for the same reasons as given for 

claim 1 above. 

 

6. Exclusion from patentability, Article 52(2) and (3) EPC 

 

It is open to debate whether some of the claims, in 

particular claim 6, are excluded from patentability by 

Article 52(2) and (3) EPC. The question is, however, 

irrelevant in view of  7 below. 

 

7. Further technical effect 

 

7.1 On page 10 of the statement of grounds of appeal (lines 

10 to 13), the appellant identifies the effects 

achieved by the claimed invention thus: "System 

failures due to an otherwise non-matching data type 

requirement in the underlying system [are] avoided and 

thereby robustness, reuse and consistency of (mobile) 

application programs is improved". However, the board 

is not convinced, at least insofar as this suggests 

that the claimed invention makes the computer system 

more reliable, in the sense of avoiding program or 

system crashes. A properly written program expecting a 

ten-digit customer number will not crash if presented 



 - 9 - T 2048/07 

C6718.D 

with a twenty-digit one, it will simply reject the 

input. Indeed, if anything, the proposed invention 

introduces new dangers of system failure. The problems 

involved in at first accepting an assignment to a 

variable of a value consisting of twenty digits, and 

later changing the definition of that variable to 

specify that it can only have values of ten digits 

length, are evident. 

 

The Board accepts that reading certain data usually 

embedded in program source code from a file would make 

at least that part of the source code more reusable and 

the program more flexible and portable (as it was 

formulated in the appellant's submission of 13 April 

2007, page 5, lines 5 and 6). However, this is simply 

an advice on how to write a program, and belongs to the 

fundamentals of that art. To take an example, if one 

wanted to write a program to calculate the trajectory 

of a projectile, one option would be to embed the value 

of g (acceleration due to gravity, on the earth's 

surface approximately 9.8 ms-2) in the source, either as 

a number or as a defined constant. The program would, 

however, not work for trajectories on the moon; the 

system would "fail" if one tried to use it for such a 

calculation. To make the program cover all cases, the 

value of g could be made an input variable. It would 

simply be a programming option that would directly 

follow from the specification drawn up by a systems 

analyst: if the specification states that some data may 

change, the programmer will make it a variable. 

 

7.2 The program, therefore, contains only features that are 

necessary to ensure its proper functioning, independent 

of any technical context in which it should be used. As 



 - 10 - T 2048/07 

C6718.D 

a consequence, the program lacks a "further technical 

effect", i.e. an effect that goes beyond the normal 

technical effects that would be caused by any program 

within the computer system on which it runs (T 1173/97, 

OJ 1999, 609, Reasons 6). 

 

7.3 During the oral proceedings, the representative 

reformulated the "reliability" argument as an increased 

availability of the system on which the program is 

running, since a change of the metadata could be 

effected without stopping the program. It was argued 

that this was the required "further technical effect". 

However, the board considers that this again is simply 

a matter of how a program is specified. A correct 

program is precisely as flexible as it is designed to 

be. The way in which a formal specification is 

implemented in a computer program is part of the art of 

computer programming, which by virtue of Art. 52(2)(c) 

and (3) EPC cannot of itself be adduced as an 

indication of "technical" activity (see G 3/08, OJ EPO 

2011, 10, Reasons 13.5). 

 

7.4 In the course of discussion, the representative was 

asked if, taking the example trajectory program, he 

would consider there to be the same "further technical 

effect" in a program which read in the value of "g" 

rather than having it embedded in the source code. He 

said that there would indeed be a technical difference 

between the programs. The board agrees that if the 

"increased availability" argument were accepted, this 

would be the consequence. But the implication of this 

would be that any program which read in any data at all 

would show a "further technical effect". The board can 

not accept this: reading in data is part of the 



 - 11 - T 2048/07 

C6718.D 

fundamental definition of computing - input, process, 

output. Thus the board considers that reading in data 

does not go beyond the normal technical effects that 

would be caused by any program within the computer 

system on which it runs, i.e. that reading data is not 

a further technical effect in itself. Thus the 

"increased availability" argument, at least in the 

context of this particular claimed invention, equally 

fails. 

 

7.5 The board notes that the claims concern themselves with 

"metadata", i.e. a particular subset of data in general. 

However, the arguments given above are not affected by 

what the nature of the data is, nor does "metadata" 

have any inherently technical nature, as might be 

argued in the case of data relating to some technical 

process. 

 

8. Inventive step, Article 52(1) and 56 EPC 1973 

 

Since the program causes no further technical effect, 

it also solves no technical problem with respect to the 

prior art of computers in general. As a result, claims 

1, 6, 7 and 11 lack an inventive step, according to the 

established case law of the Boards of Appeal (see e.g. 

G 3/08 at 10.13). 

 

9. Conclusion 

 

For the reasons given in  8 above, the appellant's 

request is not allowable. 



 - 12 - T 2048/07 

C6718.D 

Order 

 

For this reason, it is decided that: 

 

The appeal is dismissed. 

 

 

The Registrar:     The Chairman: 

 

 

 

 

B. Atienza Vivancos   D. H. Rees 

 

 


