
BESCHWERDEKAMMERN

DES EUROPÄISCHEN

PATENTAMTS

BOARDS OF APPEAL OF

THE EUROPEAN PATENT

OFFICE

CHAMBRES DE RECOURS

DE L'OFFICE EUROPÉEN

DES BREVETS

EPA Form 3030 06.03 3506.4

Internal distribution code:
(A) [-] Publication in OJ

(B) [-] To Chairmen and Members

(C) [-] To Chairmen

(D) [X] No distribution

Datasheet for the decision

of 03 March 2011

Case Number: T 0077/08 - 3.5.06

Application Number: 04001094.4

Publication Number: 1480121

IPC: G06F9/45, G06F17/60

Language of the proceeding: EN

Title of invention:

System and method for dynamic business logic integration

Applicant:

Millennium IT (USA) Inc.

Headword:

Business logic integration/MILLENNIUM

Relevant legal provisions:

EPC 1973 Art. 84, 56

Keyword:

Clarity (no) - all requests

Inventive step (no) - all requests

Decisions cited:

Catchword:

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Beschwerdekammern Boards of Appeal Chambres de recours

3506.4

Case Number: T 0077/08 - 3.5.06

D E C I S I O N

of the Technical Board of Appeal 3.5.06

of 03 March 2011

Appellant: Millennium IT (USA) Inc.

245 First Street, 18th Floor

Cambridge, Massachusetts 02142 (US)

(Applicant)

Representative: Rupprecht, Kay

Meissner, Bolte & Partner GbR

Postfach 86 06 24

81633 München (DE)

Decision under appeal: Decision of the Examining Division of the

European Patent Office posted 02 July 2007

refusing European application No. 04001094.1

pursuant to Article 97(1) EPC.

Composition of the Board:

Chairman: D. Rees

Members: S. Krischer

M.-B. Tardo-Dino

- 1 - T 0077/08

3506.4

Summary of Facts and Submissions

This is an appeal against the decision of the examining

division, announced in oral proceedings held on 12 June

2007, with written reasons dispatched on 2 July 2007,

to refuse patent application number 04 001 094.4.

The claimed subject-matter of the various requests was

found to be unclear in some cases. The subject-matter

of the independent claims of all the requests was

further found to lack novelty or an inventive step with

respect to document:

D1 CA 2 351 990 A1, 26 December 2002.

Notice of appeal was filed in a letter dated 7 August

2007 and received on 8 August 2007. The fee was paid on

8 August 2007. A statement setting out the grounds of

the appeal was filed on 12 November 2007 together with

a main and three auxiliary requests, where the main

request was identical to that of the impugned decision.

A precautionary request for oral proceedings was made.

The board issued a summons to attend oral proceedings

to be held on 3 March 2011. It gave its preliminary

opinion that four terms used in the independent claims

were not sufficiently disclosed by the description and

not clear (Articles 83 and 84 EPC).

Furthermore, two amendments of claim 1 of all three

auxiliary requests were objected to as violating the

requirements of Article 123(2) EPC.

Finally, the board was of the preliminary opinion that

the subject-matter of claim 1 of all requests appeared

to lack an inventive step with respect to D1.

In a letter dated and received on 3 February 2011, the

appellant filed a new main request and three new

I.

II.

III.

IV.

- 2 - T 0077/08

3506.4

auxiliary requests. Moreover, it was requested to admit

five new documents to the procedure. Only one of them

is directly relevant to the present decision:

MBP1 Hudak, P.: "Conception, Evolution, and

Application of Functional Programming

Languages"; ACM Computing Surveys, Vol. 21,

No. 3, September 1989; pages 359-411.

During oral proceedings held on 3 March 2011, the

appellant filed a fourth, fifth and sixth auxiliary

request.

The appellant requests that the decision under appeal

be set aside and that a patent be granted on the basis

of the main request (claims 1-19), or alternatively on

the basis of the first (claims 1-19), second

(claims 1-18), or third auxiliary request

(claims 1-18), all filed on 3 February 2011, as well as

on the basis of the fourth (claims 1-19), fifth

(claims 1-3; claims 4-19 to be adapted), or sixth

auxiliary request (claims 1-18), filed during the oral

proceedings.

The further text on file is: description pages 1-2, 4,

7-16 as originally filed; description pages 3, 3A-3C,

5, 6 as filed on 14 May 2007; and drawing sheets 1-26

as originally filed.

Claim 1 of the main request reads as follows:

"1. A method for dynamically integrating a business

logic rule into an application, the method comprising

the steps of:

stating the business logic rule as an expression in a

functional language that utilizes defined operators,

functions and recognized or common terms in the

V.

VI.

VII.

- 3 - T 0077/08

3506.4

industry for which the application was written, and

parameters that correspond to lookup fields in an

associated database;

parsing the expression to produce an executable

routine; and

providing the executable routine to the application."

Claim 1 of the first auxiliary request differs from

claim 1 of the main request by adding to the first step

of "stating" after the word "functions" the expression

", data types that are defined in the application" ,

and by adding at the end of the second step of "parsing

the expression to produce an executable routine" the

following sentence:

"that operates without re-compiling or re-writing the

application".

Claim 1 of the second auxiliary request differs from

claim 1 of the main request by adding to the first step

of "stating" after the word "functions" the expression

", data types", and by adding at the end of the claim

the following fourth and fifth steps:

"adding, via a dynamic scheme, new fields and sub-

fields to the database; and

redefining one or more of said parameters by adding

new database fields and sub-fields to associated

tables that essentially link the parameters to the

database."

Claim 1 of the third auxiliary request differs from

claim 1 of the second auxiliary request by adding at

the end of that claim the following sixth step:

"allowing a user to create new such keywords."

- 4 - T 0077/08

3506.4

Claim 1 of the fourth auxiliary request differs from

claim 1 of the main request by adding at the end of

the second step of "parsing the expression to produce

an executable routine" the following phrase:

"in the form of a parse tree when the business logic

rule controls on-line actions".

Claim 1 of the fifth auxiliary request differs from

claim 1 of the main request by adding at the end of

that claim the following expression:

"said parameters being dynamically updated to

correspond to changes in the underlying business logic

rules".

Claim 1 of the sixth auxiliary request differs from

claim 1 of the third auxiliary request by replacing at

the end of that claim the word "keywords" by the

expression "recognized or common terms in the industry

for which the application was written", and by adding

at the end of that expression the following phrase:

"wherein the database is dynamically configurable".

In all requests, claim 12 is the corresponding indepen

dent system claim.

At the end of the oral proceedings the chairman

announced the board's decision.

VIII.

- 5 - T 0077/08

3506.4

Reasons for the Decision

Admissibility of the appeal

The appeal satisfies the requirements of the EPC for

admissibility, see sections I and II above.

Original disclosure and admissibility of the requests

The objections with respect to Article 123(2) EPC

raised by the board in its summons to oral proceedings,

sections 5.5 and 5.6, respectively, were remedied in

the final requests by replacing and by re-introducing,

respectively, the expressions in question.

Claim 1 of the main request differs from the preceding

main request by replacing the term "keywords" by the

expression "recognized or common terms in the industry

for which the application was written". The latter

expression is based on the original description,

page 8, lines 7-10.

This amendment had also been applied to claim 1 of the

first to third auxiliary request, with the exception of

the second occurrence of the term "keywords" in the

third auxiliary request, independent claims 1 and 12,

last line. The appellant stated during oral proceedings

that this happened by mistake and that they were

willing to remedy it if that request was otherwise

allowable.

As to claim 1 of the fifth auxiliary request, the

appellant indicated the passage in the original

description, page 4, line 8-15 as the basis for adding

to the claim the expression "said parameters being

dynamically updated to correspond to changes in the

1.

2.

2.1

2.2

2.3

2.4

- 6 - T 0077/08

3506.4

underlying business logic rules".

However, the expression "business logic rules" is used

in the plural form in both the passage and the added

expression, whereas the rest of the claim uses it in

the singular. Secondly, the claim (including the added

expression) deals with "parameters" whereas the passage

deals with a "set of parameters". Thirdly, different

parameters are meant in the two contexts. The first two

sentences of the passage read:

"The set of parameters associated with a given GUI is

dynamically updated, to correspond to changes in the

underlying business logic rules. The user writes and/

or edits the expressions for the respective business

logic rules by selectively combining the available

functions, operators and parameters."

So, the set of parameters that a graphical user

interface (GUI) offers for writing or editing business

logic rule expressions is updated. In the claim, one

business logic rule expression which is already written

"utilizes" - among other things - specific parameters.

These are then updated, according to the claim

amendment. However, the choice of parameters offered by

the GUI had already been made for the specific business

logic rule expression of the claim. So, the claim does

not specify the same point in the process for updating

as does the cited passage.

Therefore, the amendments of claim 1 of the fifth

auxiliary request violate the requirements of

Article 123(2) EPC, and consequently, this request is

not admitted to the procedure.

- 7 - T 0077/08

3506.4

As to the other requests, taking into account the

criteria given in the Rules of Procedure of the Boards

of Appeal, Article 13(1), the board exercised its

discretion to admit them.

Clarity of claim 1 of all requests

The board objected in its summons to oral proceedings,

section 4 that the following four terms, used in the

claims, were ambiguous and insufficiently disclosed,

which resulted in a lack of clarity of the claims

(Article 84 EPC), namely:

- business logic rule;

- keywords;

- parsing the expression (in a functional language) to

produce an executable routine;

- expression in a functional language.

As to "business logic rule", the board has come to the

conclusion that a skilled person would recognise that

the technical content of this term is simply the same

as that of the term "rule", which is considered to be

clear.

The term "keywords" had been replaced in all the

present requests by "recognized or common terms in the

industry for which the application was written" (with

the exception of one occurrence by mistake in the third

auxiliary request - see section 2.3 above). The board

considers this expression adequately clear and

realisable by the skilled person, at least in the form

of variable names. For example, if a program is written

for the image processing industry, the programmer might

well use the variable name "GammaCorrection", a common

term in the industry. The board notes that it considers

2.5

3.

3.1

3.2

- 8 - T 0077/08

3506.4

that such a use would satisfy this feature of the

present claims.

As to the term "parsing the expression to produce an

executable routine", the board has come to the

conclusion, partly based on the documents submitted by

the appellant with its response to the summons, that it

agrees with appellant that this feature would be

understood, and is realisable, by the skilled person.

However, the board maintains its clarity objection to

the phrase "expression in a functional language", which

is still used in the independent claims of all the

present requests. The board accepts that "functional

language" is a well-known term (having been used since

the 1950's). It is, however, not well-defined. It is

not clear which programming languages fall under this

term and which do not. There are functional elements in

almost any language, even in imperative ones. It is

possible to program in a functional style even in an

imperative language like "C". This means that the word

"functional" is more a matter of style and programming

paradigm than an actual definition of class of

languages. See for example the document MBP1

(introduced by the appellant), page 361, right column,

last but one paragraph:

"Since most languages have expressions, it is tempting

to take our definitions literally and describe

functional languages via derivation from conventional

programming languages: Simply drop the assignment

statement and any other side-effecting primitives.

This approach, of course, is very misleading. The

result of such a derivation is usually far less than

satisfactory, since the purely functional subset of

most imperative languages is hopelessly weak (although

3.3

3.4

- 9 - T 0077/08

3506.4

there are important exceptions, such as Scheme [Rees

and Clinger 1986]).

Rather than saying what functional languages don’t

have, it is better to characterize them by the

features they do have. For modern functional

languages, those features include higher-order

functions, lazy evaluation, pattern matching, and

various kinds of data abstraction - all of these

features will be described in detail in this paper."

And it continues on page 362, paragraph 2:

"This discussion suggests that what is important is

the functional programming style, in which the above

features are manifest and in which side effects are

strongly discouraged but not necessarily eliminated."

So, there are gradations as to how "functional" a

language is, from purely functional to "less

functional", with or without features like multiple

assignments to variables, higher-order functions, lazy

evaluation, or pattern matching.

If one takes the language "LISP", for example, which is

often called functional, but with which you can also

program in a "non-functional style", it is not clear if

LISP would be covered by the term "functional language"

in the claim, or not.

Therefore, the subject-matter of claim 1 of all

requests is not clear (Article 84 EPC).

This conclusion suffices to dismiss the appeal.

However, since the question of inventive step had been

extensively discussed in the first instance, the board

4.

4.1

- 10 - T 0077/08

3506.4

will give its assessment of that question. Given the

above considerations with respect to "functional

language" and the fact that the application discloses

only fragmentary, incomplete, examples of an "expres

sion in a functional language" (e.g. figure 3, ele

ment 36 and figure 4A, element 36), the board assumes

that the skilled person might consider or interpret

that this feature is to be taken as an "expression in a

programming language".

Inventiveness of claim 1

Main request

The appellant alleged that the main difference between

claim 1 and the disclosure of D1 is that in the claim a

business logic rule is stated as an "expression in a

functional language", whereas in D1 it is formulated as

a script in a file in the markup language XML which is

then automatically included in a source code template

(see D1, figures 4A and 4B) which is preferably written

in Java (see D1, page 12, lines 15-17).

He further stated that the method of D1 had a low

flexibility which led to the objective technical

problem of the invention with respect to D1 of how to

provide more flexibility when writing business logic

rules.

For a number of reasons, the board is unconvinced by

this reasoning:

As stated above in section 4., the board considers the

"expression in a functional language" in claim 1 simply

as an "expression in a programming language".

5.

5.1

5.1.1

5.1.2

5.1.3

- 11 - T 0077/08

3506.4

The skilled person would understand the term

"expression" in a programming context as an entity

which evaluates to a result (with or without side-

effects on the state of the computer).

Secondly, the board is of the opinion that any activity

of writing text in a form which is automatically

executable by a computer is a kind of programming,

regardless whether this is done in a source code file

or in an XML file.

Thirdly, there is one embodiment in D1, page 10,

line 26 and on figure 3A where the user writes the

business logic rules directly in source code without

writing an XML script:

"To create new rules for placement in group 388, a

user writes source code 391 for a rule and then uses

compiler 392 to compile code 391 to created executable

code 393 which is then subsequently placed in

group 388."

The business logic rule that is disclosed in D1,

figure 4A, element 410 (as a script in an XML file)

reads as follows:

"<SCRIPT>

if (!k_eq.equals(fiType)) {

 %MSG_REDIRECT

}

 </SCRIPT>"

This is an imperative if-then-else statement and so

does not qualify as an "expression in a programming

language".

5.1.4

5.1.5

5.1.6

- 12 - T 0077/08

3506.4

Thus, the board recognises as the difference between

claim 1 with D1 that claim 1 expect the user to

formulate a business logic rule as an expression in a

programming language" whereas the method of D1 expects

a statement in a programming language for that purpose.

As to the alleged technical problem of how to provide

more flexibility, it is questionable to what extent

making a system more convenient or "flexible" is a

technical issue. Secondly, regardless whether it is a

technical one or not, the board does not consider the

usage of an expression to be generally more flexible

than a statement when formulating a business logic

rule.

Furthermore, since almost all programming languages

provide expressions, a skilled person would implement

the ability for the user to formulate a business logic

rule as an expression if the skilled person considers

this formalism more adapted for the expected kind of

business logic rules, without exercising inventive

skills.

The appellant further argued that claim 1 and D1

differed in that the claimed method did not need

linking of compiled program parts so that new business

logic rules can be added without stopping the

application.

The appellant indicated three passages in the original

description, page 3 in order to show the adding of

business logic rules without stopping the application.

They read as follows:

- "dynamically integrating changes in the

rules" (line 15);

5.1.7

5.1.8

5.1.9

5.1.10

5.1.11

- 13 - T 0077/08

3506.4

- "the application software readily incorporates the

new and/or revised rules" (line 20); and

- "The DBLRI translates the new expressions into

corresponding executable routines that are then

available to the application software." (line 25).

However, these passages do not actually disclose an

adding of business logic rules without stopping the

application. Neither can the board identify any passage

in the application which would clearly and

unambiguously disclose, or even imply, this feature.

Moreover, even if such a feature were disclosed in the

application as a whole, the subject-matter of the

independent claim would not imply it.

As to not needing linking, what is actually claimed is

"dynamically integrating" (line 1). However, a dynamic

integration of a portion of a program into a whole

program was well-known at the relevant priority date of

the application, as is evidenced by the application's

reference to "DLLs" (Dynamic Link Libraries) without

further explanation. There is nothing in D1 which would

deter the skilled person from using this well-known

technique.

Therefore, the subject-matter of the claim 1 of the

main request is not inventive over the disclosure of D1

(Article 56 EPC).

First auxiliary request

As noted above in section VII, claim 1 of the first

auxiliary request differs from claim 1 of the main

request by adding to the first step of "stating" after

the word "functions" the expression ", data types that

are defined in the application" , and by adding at the

5.1.12

5.1.13

5.2

- 14 - T 0077/08

3506.4

end of the second step of "parsing the expression to

produce an executable routine" the following sentence:

"that operates without re-compiling or re-writing the

application".

The appellant did not dispute that it is commonplace

for programming languages to include the ability to

define data types. The board therefore considers it

obvious to use data types defined in the application in

order to write business logic rules for that

application.

As to the second additional feature, document D1,

page 9, lines 8-11 discloses that the source code of

the application is compiled once, and that it is not

required to be modified if new business logic rules are

added.

Therefore, the subject-matter of that claim is not

inventive over the disclosure of D1 (Article 56 EPC).

Second auxiliary request

The appellant stated that the main difference of

claim 1 of the second auxiliary request to D1 was the

possibility that the functional language was extensible

via the database. However, the board considers the

addition of new fields to a database a commonplace

feature, especially in the field of business related

programs.

Therefore, the subject-matter of that claim is not

inventive over the disclosure of D1 (Article 56 EPC).

5.3

- 15 - T 0077/08

3506.4

Third auxiliary request

The appellant stated that the main difference of

claim 1 of the third auxiliary request to D1 was the

possibility that the functional language was extensible

by creating new "keywords". However, what is actually

claimed is "in a ... language that utilizes ...

recognized or common terms in industry for which the

application was written". As noted above at

section 3.2, this feature is actually satisfied by the

use of appropriate variable names, a commonplace

feature in any programming language. Moreover, the use

of variable names cannot be said to "extend" a

language.

Therefore, the subject-matter of that claim is not

inventive over the disclosure of D1 (Article 56 EPC).

Fourth auxiliary request

As noted above in section 3.3, the board agrees with

the appellant that the intermediate step of

interpreting a parse tree directly was well-known at

the priority date of the application.

It further considers it obvious for a skilled person to

directly interpret urgent business logic rules, as for

example for on-line actions on the stock market,

instead of compiling them, and arbitrarily to choose

the well-known parse tree as the intermediate code

format for that purpose.

Therefore, the subject-matter of that claim is not

inventive over the disclosure of D1 (Article 56 EPC).

5.4

5.5

- 16 - T 0077/08

3506.4

Sixth auxiliary request

As mentioned before, claim 1 of the sixth auxiliary

request differs from claim 1 of the third auxiliary

request in that the term "keyword" had been entirely

replaced and by the additional feature of a dynamic

configurability of the database. The appellant

indicated the passage on page 3, line 30 as the basis

in the original description for that. However, this

passage merely discloses that new fields can be added

to the database. This feature is already present in the

third auxiliary request.

In order to show the disclosure how the database is

configured and under what circumstances, the appellant

further indicated the passage on page 6, line 28 which

states that a dynamic scheme is used for adding new

fields. This feature is again already present in the

third auxiliary request, so that the same reasoning as

for the third auxiliary request applies to the sixth

auxiliary request.

Therefore, the subject-matter of that claim is not

inventive over the disclosure of D1 (Article 56 EPC).

Conclusion

Thus, the subject-matter of the independent claims of

all the requests is unclear, in violation of Article 84

EPC. Hence, no request is allowable and the appeal must

be dismissed.

Further, as shown in the above discussion of a possible

interpretation of the claimed subject-matter, no

request satisfies the requirements for an inventive

step, in violation of Articles 52(1) and 56 EPC.

5.6

6.

- 17 - T 0077/08

3506.4

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

B. Atienza Vivancos D. Rees

