
BESCHWERDEKAMMERN
DES EUROPÄISCHEN
PATENTAMTS

BOARDS OF APPEAL OF
THE EUROPEAN PATENT
OFFICE

CHAMBRES DE RECOURS
DE L’OFFICE EUROPEEN
DES BREVETS

EPA Form 3030 This datasheet is not part of the Decision.
 It can be changed at any time and without notice.

C8613.D

Internal distribution code:
(A) [] Publication in OJ
(B) [] To Chairmen and Members
(C) [] To Chairmen
(D) [X] No distribution

Datasheet for the decision
of 9 November 2012

Case Number: T 0505/09 - 3.5.06

Application Number: 04810843.5

Publication Number: 1683025

IPC: G06F 11/36

Language of the proceedings: EN

Title of invention:
System, method, and computer program product for identifying
code development errors

Applicant:
Siemens Product Lifecycle Management Software Inc.

Headword:
Testing program code/SIEMENS

Relevant legal provisions (EPC 1973):
EPC Art. 56

Keyword:
"Original disclosure and clarity - after amendment (yes)"
"Inventive step over general common knowledge (yes)"
"Common knowledge in the pertinent technical field
insufficiently substantiated"
"Remittal for further prosecution"

 Europäisches
Patentamt

 European
Patent Office

 Office européen
des brevets b

 Beschwerdekammern Boards of Appeal Chambres de recours

C8613.D

 Case Number: T 0505/09 - 3.5.06

D E C I S I O N
of the Technical Board of Appeal 3.5.06

of 9 November 2012

 Appellant:
 (Applicant)

Siemens Product Lifecycle Management Software Inc.
5800 Granite Parkway, Suite 600
Plano, TX 75024 (US)

 Representative:

Kley, Hansjörg
Siemens AG
Postfach 22 16 34
D-80506 München (DE)

 Decision under appeal: Decision of the Examining Division of the
European Patent Office posted 7 August 2008
refusing European patent application
No. 04810843.5 pursuant to Article 97(2) EPC.

 Composition of the Board:

 Chairman: D. H. Rees
 Members: M. Müller
 C. Heath

 - 1 - T 0505/09

C8613.D

Summary of Facts and Submissions

I. The appeal lies against the decision of the examining

division, with written reasons dispatched on 7 August

2008, to refuse European patent application 04810843.5.

The decision mentions, inter alia, the following two

documents based on which objections had been raised du-

ring examination:

D1: Greer D., "How to debug a program", excerpt from the

"SMUG" book, pp. 1-2, March 2001, retrieved from the

Internet, and

D2: Moock C., "Actionscript for Flash MX: The Definitive

Guide", 2nd ed., Chapter 19, O'Reilly, 2001,

but it does not rely on either of them for its reasons.

The then main and 1st auxiliary requests were refused

for lack of an inventive step over common knowledge

alone, whereas the then 2nd auxiliary request was found

to violate Articles 84 EPC 1973 and 123 (2) EPC. In an

obiter dictum however, the 2nd auxiliary request, sui-

tably interpreted, was also argued to lack an inventive

step over common knowledge alone.

II. An appeal was filed on 6 October 2008, the appeal fee

being paid on the same day. A statement of grounds of

appeal was filed on 17 December 2008. It was requested

that the decision be set aside and a patent be granted

based on one of three sets of claims filed with the

grounds of appeal.

III. With a summons to oral proceedings, the board informed

the appellant about its preliminary opinion according

to which the claims lacked clarity, Article 84 EPC 1973,

 - 2 - T 0505/09

C8613.D

and the main and 1st auxiliary requests lacked an in-

ventive step, Article 56 EPC 1973, but indicated that

it was minded to remit the case to the first instance

for further prosecution if a clarified 2nd auxiliary

request were submitted.

IV. During oral proceedings, the appellant submitted an

amended claim 1 and replaced all his earlier request

with the sole request that a patent be granted based on

this claim with further claims to be defined. The

further application documents on file are as follows:

description pages

1, 4, 5, 8-13 as originally filed

2, 6, 7 as filed with telefax on 4 July 2007

3, 14 as filed with telefax on 4 February 2008

drawing sheets

2/4-4/4 as originally filed

1/4 as filed with telefax on 4 July 2007

V. Claim 1 reads as follows:

"A method for identifying defective program code,

comprising:

providing a first program code (GoodDLL) consisting of

verified program components (S1, S2, S3, S4, S5) and a

second program code (NewDLL) having a plurality of

modified program components (S2',S3',S5'), wherein a

test of the second program code (NewDLL) failed;

(i) grouping the plurality of modified program

components (S2', S3', S5') into sets,

 - 3 - T 0505/09

C8613.D

(ii) running the test process for each of the sets of

modified program components (S2', S3', S5') by

creating a third program code (TestDLL) which

corresponds to the second program code (NewDLL),

wherein the set of modified program components

(S2', S3', S5') is replaced with a set of

corresponding ones of the verified program

components (S2, S3, S5) and testing the third

program code (TestDLL), and

(iii) determining on a test of a set failed that the set

contains a defective modified program component;

 automatically testing a further third program code

(TestDLL), wherein in said third program code

(TestDLL), one of the modified program components

(S2', S3', S5') of the failed set is replaced with

a corresponding one of the verified program

components (S2, S3, S5) and designating the

replaced modified program component as defective

according to the results of the test."

VI. At the end of the oral proceedings, the chairman

pronounced the decision of the board.

Reasons for the Decision

The invention

1. The application relates to the testing of software du-

ring software development. More specifically it relates

to the rather common situation that a program used to

work properly (i.e. pass the pertinent tests) at some

 - 4 - T 0505/09

C8613.D

point in time but stopped working properly (i.e. failed

at least some of the pertinent tests) after having been

modified ("Yesterday my program worked. Today it does

not. Why?"; see description, pars. 1-3). In the art,

such testing of modified code is referred to as re-

gression testing.

1.1 The application proposes a procedure based on selec-

tively replacing modified program components by earlier,

verified components - thereby "undoing" some of the mo-

difications - and running the pertinent tests again

(see fig. 2). When this second run succeeds, it is

concluded that the replaced components must contain an

error (see e.g. fig. 4). The application further

proposes to perform this procedure in two stages: In

the first one, an entire set of program components is

replaced by corresponding set of verified ones and the

program so-obtained is tested to find defective sets of

components (see description, pars. 28-32, and fig. 3,

nos. 315-335), and in the second one, individual

components from defective sets are replaced and tested

(see description, par. 33, and fig. 4).

1.2 Claim 1 refers to the tested program as the "first pro-

gram code ... consisting of verified components", to

the modified and erroneous program as the "second pro-

gram code ... having ... modified program components"

for which "a test ... failed", and as respective "third

program code" to the programs generated during the test

procedure according to the invention. Claim 1 also spe-

cifies that the modified program components of the se-

cond program code individually correspond to the "veri-

fied components" of the first one.

 - 5 - T 0505/09

C8613.D

Article 123 (2) EPC

2. Present claim 1 is based on claim 1 of the second

auxiliary request as subject to the decision under

appeal.

2.1 The decision (reasons 2.15) found this earlier claim to

violate Article 123 (2) EPC because, as the board un-

derstands the argument, it mentioned the replacement of

individual components before the replacement of sets of

components and thus in the wrong and in an undisclosed

order. Claim 1 now specifies steps (ii) and (iii) in

the correct order, so that this deficiency is overcome.

2.2 The application as originally filed discloses that the

"changed files are ... sorted into groups" or "sorted

into sets" (see par. 27) and does not literally talk

about "grouping ... into sets" as does claim 1 in step

(i). The application also discloses that the "sorting"

could be "by any chosen criteria" such as "by the user

or developer". In the board's view, the skilled person

person would thus understand that the term "sorting" as

used in the application is not meant to imply any order

on program components, but that it is used instead to

mean, more generally, "grouping". Accordingly, the

board finds that the feature "grouping" is originally

disclosed.

2.3 Beyond that, the board is satisfied that the wording of

claim 1 finds disclosure in the application as origi-

nally filed, witness the passages of the application as

cited above, and therefore conforms with Article 123 (2)

EPC.

 - 6 - T 0505/09

C8613.D

Article 84 EPC 1973

3. In the board's view, amended claim 1 is clear. In

particular, the objection raised in the decision under

appeal (reasons 2.16) that claim 1 of the then 2nd

auxiliary request lacked clarity due to an expression

lacking proper antecedent in the claim is overcome by

the amended wording.

Article 56 EPC 1973

4. The decision under appeal argues that the claimed

invention is obvious over common knowledge in the art

of testing, especially regression testing of programs

(see reasons 2.2, 2nd par. for the then main and the

1st auxiliary request, and, obiter, reason 3.11 for the

then 2nd auxiliary request). It is argued that the

"process of elimination", understood as excluding

possible causes of failure, is commonly used in the

field of regression testing and implies that some

indispensable components have to be replaced by

"trusted" components. It is also argued that the

process of replacing a tested component by a "trusted"

one is common practice beyond the narrow context of

software testing, as is illustrated by way of an

example outside of the software context. With regard to

the then 2nd auxiliary request on which present claim 1

is based, the decision under appeal further argues that

the "principle of divide and conquer" is common

knowledge to a person skilled in the art of testing.

The decision under appeal thus arrives at its

conclusion that the claimed invention lacks an

inventive step purely based on common knowledge in the

art and without reference to any of the cited documents.

 - 7 - T 0505/09

C8613.D

5. The board agrees with the suggestion in the decision

under appeal that replacement of individual components

is a commonly used strategy for locating the error in a

malfunctioning system which used to work properly until

a number of changes were made. For example, assume one

were to modernise the wiring in a household and to re-

place several old (but working) components such as wire

connections, safety fuses, or switches, only to find

the changed wiring not to work. It is, in the board's

judgment, a typical strategy to locate the cause for

this error to selectively "undo" the changes, in order

to see whether the wiring would work if, for instance,

this old safety fuse were used instead of the new one.

5.1 The board is not convinced, however, that the claimed

strategy, which the decision under appeal refers to as

"divide and conquer", namely to determine defective

sets of components before determining individual defec-

tive components from defective sets of components, is a

commonly known testing strategy. The board considers

that it depends on the nature of the system being

tested whether its components can be "grouped" in a

meaningful manner and in such a way that replacement of

entire groups of components is possible. The board also

notes that the need to speed up the testing of a large

number of modifications, and thus the need for grouping,

may not arise in systems in which modifications are

normally made one by one and tested immediately, or in

systems with a small complexity in which large numbers

of modifications do not arise at all. Therefore, the

board considers that the assertion that "divide and

conquer" is a well-known testing strategy cannot be

made independent of the system being tested.

 - 8 - T 0505/09

C8613.D

6. As for the context of software testing, the board

agrees with the decision under appeal that the person

skilled in the art of testing would not hesitate to

apply the "replacement" strategy to the testing of

software and that, therefore, replacing an individual

modified program component by an earlier, verified

version to determine whether or not they are defective

is obvious by direct analogy.

6.1 The board also agrees that "divide and conquer" is a

well-established principle in computing, based on the

idea of solving a hard problem by recursively breaking

it into simpler subproblems and combining their solu-

tions into a solution of the entire problem.

6.2 However, while the board deems the "replacement" stra-

tegy to be obvious for the testing of software almost

without any appreciation of the nature and complexity

of the software being tested or of nature of the tests

employed and the computational costs involved, it takes

the position that the relevance of "divide and conquer"

in this context cannot be judged without an assessment

of such aspects. The board also considers that such an

assessment goes beyond general common knowledge the art

of testing. The board therefore concludes that the mere

existence of the well-established, but abstract, compu-

tational principle of "divide and conquer" is suffi-

cient to establish that the claimed method of error lo-

calisation in software is obvious over the common know-

ledge in the art of testing.

7. The decision under appeal further asserts that elimina-

tion is also commonly used in the field of regression

testing. The appellant however does not accept this

 - 9 - T 0505/09

C8613.D

allegation without any specific evidence (grounds of

appeal, p. 1, 3rd par.). The board agrees with the

appellant that the allegation can reasonably be

challenged and must, therefore, if relied upon be

substantiated by evidence.

7.1.1 Neither D1 nor D2 provide such evidence. Although both

D1 and D2 use the term "elimination" (see D1, par. 4,

and D2, 3rd par. from below), they do so merely to

refer to the general strategy of eliminating possible

causes of an error in the process of locating the

actual cause.

7.1.2 D1 talks about debugging in general terms. Inter alia,

it discusses a game called Clue with the objective to

deduce the solution to a crime by a "process of elimi-

nation" and it suggests that one "can do the same" in

debugging by "doing numerous, carefully-selected test

runs, each of which changes only one factor" and by

"deduc[ing]", "[f]rom the differences in the results",

"which module the error is in" and "which data

structure is involved" (par. [4]). What these factors

are, how they are to be changed across test runs, and

how test results are to be interpreted is left open.

7.1.3 D2 discusses a methodology of debugging (p. 408 ff.) in

three stages, namely "recognizing and reproducing a

problem", "identifying the source of the problem" and

"fixing the problem". For recognizing problems, D2 dis-

closes the importance of testing (see p. 409, 2nd par.).

For identifying the source of an error, D2 teaches to

compare what "the code should be doing against what it

actually is doing" and to use the "process of elimina-

tion" to narrow down the possible sources (p. 410,

 - 10 - T 0505/09

C8613.D

lines 1-2 and 3rd par. from the bottom, line 1). The

only specific illustration for such elimination in D2

is based on program tracing (see e.g. the trace()

statements in the code on the top of p. 410), rather

than on the modification of any "factors", let alone

the replacement of program components.

7.1.4 Neither D1 nor D2 therefore provide evidence for the

assertion that "elimination" is a commonly known tech-

nique in regression testing. Nor do they disclose or

suggest the claimed improvement based on "divide and

conquer". Hence D1 and D2 are also insufficient to

establish that present claim 1 lacks an inventive step.

Summary

8. Present claim 1 was considerably amended over claim 1

of the 2nd auxiliary request as subject to the decision

under appeal and overcomes the primary reasons for

which the then second auxiliary request had been

refused, namely those under Article 123 (2) EPC and

Article 84 EPC 1973.

8.1 The board also considers that the objection under

Article 56 EPC which the decision made obiter cannot be

maintained because it relies on assertions about common

knowledge which, in the board's judgment, either do not

suffice to establish lack of inventive step of claim 1

insofar as they relate to the art of testing in general,

or which must be substantiated with specific, typically

written, evidence insofar as they relate to the

specific field of software testing and debugging.

 - 11 - T 0505/09

C8613.D

8.2 The board therefore decides to set aside the decision

and exercises its discretion under Article 111 (1) EPC

to remit the application to the department of first

instance for further prosecution.

Order

For these reasons it is decided that:

1. The decision under appeal is set aside.

2. The case is remitted to the first instance for further

prosecution based on the main request (claim 1 as filed

during oral proceedings, further claims to be defined).

The Registrar: The Chairman:

B. Atienza Vivancos D. H. Rees

