
BESCHWERDEKAMMERN
DES EUROPÄISCHEN
PATENTAMTS

BOARDS OF APPEAL OF
THE EUROPEAN PATENT
OFFICE

CHAMBRES DE RECOURS
DE L'OFFICE EUROPÉEN
DES BREVETS

EPA Form 3030
This datasheet is not part of the Decision.

It can be changed at any time and without notice.

Internal distribution code:
(A) [-] Publication in OJ
(B) [-] To Chairmen and Members
(C) [-] To Chairmen
(D) [X] No distribution

Datasheet for the decision
of 31 May 2022

Case Number: T 2341/16 - 3.5.06

Application Number: 05858788.2

Publication Number: 1929400

IPC: G06F9/46, G06F9/455

Language of the proceedings: EN

Title of invention:
PROCESSING EVENTS FOR CONCURRENT TASKS IN A VIRTUAL MACHINE

Applicant:
Oracle America, Inc.

Headword:
Processing events/ORACLE

Relevant legal provisions:
EPC 1973 Art. 56, 84, 116(1)

Keyword:
Inventive step - (no)
Claims - clarity (no)
Oral proceedings - request to hold as video conference (not
allowed)

- 2 -

EPA Form 3030
This datasheet is not part of the Decision.

It can be changed at any time and without notice.

Decisions cited:

Catchword:

Beschwerdekammern Boards of Appeal of the
European Patent Office
Richard-Reitzner-Allee 8
85540 Haar
GERMANY
Tel. +49 (0)89 2399-0
Fax +49 (0)89 2399-4465

Boards of Appeal

Chambres de recours

Case Number: T 2341/16 - 3.5.06

D E C I S I O N
of Technical Board of Appeal 3.5.06

of 31 May 2022

Appellant: Oracle America, Inc.
500 Oracle Parkway
Redwood City, CA 94065 (US)

(Applicant)

Representative: D Young & Co LLP

120 Holborn
London EC1N 2DY (GB)

Decision under appeal: Decision of the Examining Division of the

European Patent Office posted on 18 May 2016
refusing European patent application No.
05858788.2 pursuant to Article 97(2) EPC.

Composition of the Board:

Chairman M. Müller
Members: A. Teale

K. Kerber-Zubrzycka

- 1 - T 2341/16

Summary of Facts and Submissions

This is an appeal against the decision, dispatched with

reasons on 18 May 2016, refusing European patent

application No. 05 858 788.2 on the basis that inter

alia claim 1 according to the main and first and second

auxiliary requests did not satisfy Article 56 EPC

regarding inventive step in view of the following

document:

D1: Balfanz D. and Gong L., "Experience with Secure

Multi-Processing in Java", XP002377379, Technical

Report no. 560-97, 29 September 1997, Princeton

University, USA.

A notice of appeal and the appeal fee were received on

27 May and 6 July 2016, respectively. The appellant

requested that the application be granted.

With a statement of grounds of appeal, received on

28 September 2016, the appellant submitted amended

claims according to a new first auxiliary request. The

appellant requested that the board set aside the

decision on the basis of the main request in the

decision (present main request), said new first

auxiliary request, the first auxiliary request in the

decision (present second auxiliary request) and the

second auxiliary request in the decision (present third

auxiliary request). The appellant also requested oral

proceedings should the main request not be allowed.

In an annex to a summons to oral proceedings the board

set out its preliminary opinion on the appeal that it

had doubts regarding the inventive step, Article 56 EPC

1973, of the subject-matter of the independent method

I.

II.

III.

IV.

- 2 - T 2341/16

and device claims of all requests in view of D1. In

claims 1 and 10 of the first auxiliary request there

was no indication of the role played by retrieving the

task ID of the task currently in the foreground and

thus uncertainty and a lack of clarity, Article 84 EPC

1973, as to the technical effect of this feature and

whether it could contribute to inventive step, Article

56 EPC 1973. Moreover the expression "Java compliant"

as used in all requests had a meaning which changed

with time, thus making it unclear, Article 84 EPC 1973.

The appellant did not file any amendments or

substantive arguments in response to the board's

preliminary opinion.

In a letter received on 1 April 2022 the appellant

referred to the Covid-19 infection rates in the United

Kingdom and in Munich and requested that the oral

proceedings be held as a video conference.

In a communication dated 11 April 2022 the board noted

that there seemed to no longer be any official

limitations or impairments affecting the appellant's

ability to attend oral proceedings in person. Hence the

board was not convinced by the appellant's arguments

and still intended to hold the oral proceedings in

person.

On 13 May 2022 the appellant's representative indicated

that the appellant would not be represented at the oral

proceedings. The board then cancelled the oral

proceedings.

The application is being considered in the following

form:

V.

VI.

VII.

VIII.

IX.

- 3 - T 2341/16

Description (all requests):

pages 1, 2, 4 and 6 to 14, as originally filed, and

pages 3, 3a and 5, received on 24 February 2010.

Claims:

Main request: 1 to 12, received on 14 May 2012.

First auxiliary request: 1 to 10, received with the

grounds of appeal.

Second auxiliary request: 1 to 6, received as first

auxiliary request on 25 April 2016.

Third auxiliary request: 1 to 6, submitted as second

auxiliary request during the oral proceedings before

the examining division on 26 April 2016.

Drawings (all requests):

Pages 1/5 to 3/5 and 5/5, as originally filed, and

page 4/5, received on 24 February 2010.

Claim 1 of the main request reads as follows:

"A method of processing native events by a virtual

machine (112) that operates on a first platform (116),

wherein said first platform is provided by a mobile

device, and wherein said virtual machine concurrently

supports a first and a second task on said first

platform, said method comprising: receiving, by the

virtual machine, a native event (El) that is associated

with the first platform; determining, by said virtual

machine, which one of said first and second tasks is a

foreground task, wherein said foreground task is the

only task that is displayed; and processing, by said

foreground task, said native event."

Claim 1 of the first auxiliary request differs from

that according to the main request, editorial

amendments aside, in the addition of the following

X.

XI.

- 4 - T 2341/16

features: storing the task ID of the task which is

currently the foreground task, and retrieving, by the

virtual machine, the task ID of the task currently in

the foreground.

Claim 1 of the second auxiliary request differs from

that of the main request in the restriction of the

virtual machine to a Java virtual machine and the

addition of the following features:

- retrieving, by the Java virtual machine, the task ID

of the task currently in the foreground;

- using, by the Java virtual machine, an object

associated with the task ID to get a handle on an event

queue and event handler for the foreground task;

- manipulating, by the Java virtual machine, said

native event to be Java compliant by encapsulating the

native event so that it can be represented as a Java

event object;

- placing, by the Java virtual machine, the Java event

object in the event queue of the foreground task;

- notifying, by the Java virtual machine, the event

handler that the Java event object has been queued in

the event queue, and

- the foreground task, when processing said native

event, accessing the Java event object in the event

queue.

Claim 1 of the third auxiliary request combines the

amendments of the previous two requests.

Claims 4, 6 and 7 of the main and first auxiliary

requests and claims 2 and 3 of the second and third

auxiliary requests use the term "Java compliant".

XII.

XIII.

XIV.

- 5 - T 2341/16

Reasons for the Decision

Admissibility of the appeal

In view of the facts set out at points I to III above,

the appeal fulfills the admissibility requirements

under the EPC and is consequently admissible.

Summary of the invention

The invention relates to a virtual machine running on a

platform, meaning a mobile device and its operating

system (see [4]), the virtual machine concurrently

supporting two tasks, for instance application

programs; see figure 1B and amended page 3, lines 6

to 7. The virtual machine comprises a native event

dispatcher which receives a native event associated

with the platform and selects the "foreground" task,

the only task being displayed (see page 8, lines 3

to 4, and figure 3; step 312), to process the native

event; see figure 3.

Computers using the "World Wide Web" (WWW) protocol to

communicate via the Internet can download and execute

small applications called "applets". Applets are

typically executed by a Java Virtual Machine (JVM),

JVMs being available for a variety of platforms; see

[2-3]. The JVM can be implemented in software by an

interpreter for the JVM instruction set; see [4] and

figure 1A. The JVM and its support libraries constitute

a Java Runtime Environment (JRE).

The source code of programs (103) written in the Java

programming language is structured in "classes" and

"interfaces", referred to jointly as classes or class

files. These are compiled by the Bytecode compiler

1.

2.

2.1

2.2

2.3

- 6 - T 2341/16

(103) to Bytecodes stored in the binary "Java class

file" format; see figure 1A; 105 and [7]. The Bytecodes

in the Java class file are then decoded and executed by

the JVM.

According to amended page 3, lines 3 to 7, conventional

virtual machines do not provide a multi-tasking

environment, i.e. an environment for concurrently

executing tasks, such as applets, for receiving input

from the user or other sources; see page 3, lines 8 to

15. Some tasks, for instance an interactive game,

require "event" processing (see [14]), for instance to

receive user input from a keyboard. Such processing

comprises delivering and handling external events to

the appropriate task. In a virtual machine external

events are typically generated, transmitted or

processed by hardware or software platform components.

Such platform-specific events are also referred to as

"native" events. Conventional virtual machines cannot

support two concurrent tasks if both require native

event processing: see [15].

The application concerns enabling virtual machines to

process native events for concurrent tasks in a multi-

tasking environment; see page 3, last two lines,

page 3a, last four lines, page 4, lines 23 to 27, and

page 5, lines 4 to 14. This is achieved by an event

dispatcher which delivers native events to the fore-

ground task. As shown in figure 1B, the virtual machine

112 lies between the platform 116 and the application

layer 114. Figure 1B shows two concurrent tasks (120,

122) running concurrently on the virtual machine. The

event dispatcher 118 in the virtual machine receives

native events (E1-4), for instance incoming data from a

network device or keyboard, and routes the events to

the foreground task for handling; see [26-28].

2.4

2.5

- 7 - T 2341/16

Figure 1C shows the steps carried out by the dispatcher

to select a task and route an event to it; see [30].

Figure 2 shows a computing environment compliant with

the Java Specification for Mobile Information Device

Profile JST-37, for instance a phone or Personal Digi-

tal Assistant (PDA). A dispatcher 212 in the virtual

machine 214, implemented as an event manager thread

with wait-on-event 216 and event-dispatching logic 218,

dispatches events (E1,E2) to two tasks (214, 216)

running concurrently on the virtual machine; see [33].

The wait-on-event logic 216 causes the dispatcher to

wait until an event is received, whilst the event dis-

patching logic selects the task to which the event is

to be routed. Events arrive in the event-repository

220, a FIFO (First In First Out) queue, of the

respective task and are processed by event processing

logic 223 controlled by wait-on-event logic 222. The

tasks can by associated with Mobile Information Device

Profile (MIDP) applications 224, 226 (referred to as

"midlets") in the application layer 206. In a mobile

device user interactions with the foreground task

generate native events which are processed by the

foreground task; see [37]. The associated method steps

are illustrated in figure 3; see [39-40]. Figure 3

shows the identification of each task by a task ID; see

steps 312 and 324.

The board's understanding of the claims

The mobile device set out in the independent method

claim 1 has a display and can thus, for instance, be a

mobile phone; see [4], lines 2 to 5.

Two tasks, otherwise known as applications, run

concurrently on the virtual machine, only one task,

2.6

3.

3.1

3.2

- 8 - T 2341/16

termed the "foreground" task, being displayed. In this

context, the board understands the foreground task to

have an associated window on the device display. The

virtual machine determines which task is the foreground

task, and native events from the platform are routed to

and processed by said foreground task. The board

understands user events to be, for instance, pressing a

keyboard key or receiving data via a network; see [27].

Claim 10 of the main request further sets out the

virtual machine comprising a native event dispatcher

(118) for receiving a platform native event, deciding

which of the two concurrent tasks is the foreground

task and selecting it to process a native event.

In claim 1 of the first auxiliary request there is no

indication of the role played by retrieving the task ID

of the task currently in the foreground and thus the

effect of this feature. Hence the board finds that the

retrieval of the task ID cannot contribute to inventive

step (see below).

Clarity, Article 84 EPC 1973

In claims 4, 6 and 7 of the main request, claims 4, 6

and 7 of the first auxiliary request, claims 1, 2, 3

and 6 of the second auxiliary request and claims 1, 2

and 6 of the third auxiliary request it is unclear what

technical limitations on the native event are implied

by it being "Java compliant".

It is firstly unclear how a native event being

processed by a JVM - or a Java compliant MIDlet -

cannot be "Java compliant". Secondly, given that the

language definition of Java has developed over time, it

is unclear what technical features are implied by a

native event being compliant with "Java". The same

3.3

4.

4.1

4.2

- 9 - T 2341/16

objection applies to the features set out in the second

and third auxiliary requests of encapsulating a native

event so that it can be represented by a "Java event

object".

Document D1

According to its abstract, D1 concerns using the Java

platform, in practice a "Java Virtual Machine" (JVM),

as a multi-processing, multi-user environment. D1

acknowledges that it was previously assumed that the

JVM ran only one application, for instance a web

browser fetching and executing Java "applets" from

websites; see page 1, left column, lines 20 to 28. D1

considers extending the JVM so that it can run multiple

applications.

D1 mentions "mobile code"; see page 1 in the paragraph

bridging the two columns, on page 8, left column, line

16, on page 11, right column, line 16, and on page 12,

left column, line 11. The board agrees with the

appellant that this expression does not mean that the

platform is a mobile device; it refers to the fact,

which the person skilled in the art of computing would

know, that the executable code, for instance the

applets mentioned above, is "mobile", meaning that it

may be transferred across the network to the platform

where it is executed.

D1 also refers to "a small device" (see page 2, left

column, lines 8 to 11), but the board does not under-

stand "small" to directly and unambiguously disclose

"mobile", since small computers, for instance embedded

controllers, can have a permanent, fixed location.

5.

5.1

5.2

5.3

- 10 - T 2341/16

Considering how a single application runs on a JVM (see

page 3, section 3), a JVM has a number of threads, for

instance for garbage collection and interpreting the

Java bytecode of an application, in particular its

main() method; see page 2, right column, lines 16

to 25, and page 3, figure 1. This involves linking

classes as needed and performing necessary

initializations before using a new class; see page 3,

left column, lines 6 to 9. In the case of a Java

application using AWT (Abstract Window Toolkit)

components, a thread is started that dispatches events

and calls to (call-back) code provided by the

application; see page 3, left column, lines 45 to 47.

The board understands this to mean that a user

interface event, such as a mouse click in a window or a

key press on the keyboard, is routed by the platform

operating system to the JVM. The JVM creates an "AWT

event object" and adds it to its event queue. A

centralized event dispatcher thread of the JVM then

takes the AWT event object from the event queue and

calls the appropriate call-back method of the

associated application whose window is currently being

displayed; see page 3, figure 2 and section 3.2, "Event

dispatching". Crucially, all callbacks are from a

single event dispatcher thread; see page 4, left

column, lines 2 to 13.

Section 4 concerns the features added to a single-

application JVM to allow secure multi-processing. Of

these, making system code multi-application-aware

(page 5, feature 6) and multi-application-aware event

dispatching (page 5, feature 7) are related and

regarded as most relevant to the present case.

According to feature 6, two users running different

instances of the same program, such as a text editor,

select the same GUI (Graphical User Interface) menu

5.4

5.5

- 11 - T 2341/16

item "save file". The JVM event dispatcher thread must

distinguish between the two cases, so that each user's

file is stored in the respective user directory. Accor-

ding to feature 7, while every application receives the

same information about the underlying operating system,

different applications can have different definitions

of the standard input and output streams.

According to section 5.1, an application is defined as

a set of Java threads; see page 6, left column,

line 17. Each application has its own name space and

memory which is inaccessible to other applications; see

page 6, left column, lines 41 to 45. As shown in

figure 3, the threads belonging to the same application

all have access to a shared application-wide state; see

page 6, right column, lines 3 to 5. Whilst in the "one

application" JVM the event dispatcher thread, which is

not associated with any application and is started then

an application opens a window, executes all callbacks

from the operating system (see section 5.4, lines 1

to 5 and footnote 5), in the multi-processing case (see

figure 4 on page 9), when an application opens a

window, the system stores the application's identity;

see page 8, section 5.4, first bullet point. Then, when

a GUI event occurs, the enclosing window and its

application are identified, and the corresponding AWT

event is added to the event queue of that application,

which was created when the application first opened a

window; see page 8, right column, lines 24 to 26. A

dispatcher thread belonging to the application then

takes the event from the event queue and dispatches

(deals with) it; see page 8, right column, lines 1

to 6. Consequently, applications queue and dispatch

events independently of each other; see page 8, right

column, lines 7 to 9.

5.6

- 12 - T 2341/16

Before the examining division the applicant argued

that, in contrast to the invention, in D1 AWT events

were handled by an AWT handler with was not part of the

JVM. In particular [4] of the description stated that

the support libraries were not part of the JVM. Events

received and handled by the AWT were no longer "native"

events once they passed to the JVM. D1 also did not

mention foreground tasks, merely disclosing a mapping

between applications and windows. The examining

division saw the AWT component as a runtime library

which was used by the JVM for event handling.

The board understands an AWT event to result from a

native event being passed via the platform operating

system to the JVM. It is certainly possible that the

JVM calls routines from support libraries to handle

such AWT events. However the board agrees with the

examining division that, in doing so, the support

libraries are acting as the agent of the JVM and thus

form part of the functionality of the JVM.

Inventive step, Article 56 EPC 1973

According to the appealed decision, the subject-matter

of claim 1 of the main request differed from the

disclosure of D1 in that the foreground task was the

only displayed task. In contrast, in D1 several

application windows (foreground tasks) might be open

and thus displayed. Having only one displayed task

solved the objective technical problem of maximising

the display space for a task, this being common general

knowledge in the field of graphical user interfaces

(GUIs). Moreover, it was common general knowledge to

process user input events by the application to which

the window belonged and in which the input occurred,

this being the relevant window. If only one window/task

5.7

5.8

6.

6.1

- 13 - T 2341/16

was displayed, then it was obvious for this task to

process the event. Hence claim 1 covered the approach

known from D1 for the case of only one application

window being open.

Turning to what are now the second and third auxiliary

requests (the first and second auxiliary requests in

the decision), the examining division found that the

features added to claim 1 were known from D1.

In the grounds of appeal the appellant argued that

conventional virtual machines lacked a mechanism for

processing native events, such as keyboard input, for

concurrently executed tasks. This meant that only one

task requiring native event processing could be execu-

ted at a time or, as the description puts it, two tasks

cannot be used concurrently if they both require native

event processing; see [15] of the application as

originally filed. The virtual machine according to the

application overcame this restriction by providing an

event-dispatcher which delivered native events to the

foreground task running concurrently on a virtual

machine on a mobile device. D1 related to the

difficulties of using a JVM, which was usually used to

run a single application, to instead run multiple

applications for multiple users. This required a

separate handling of user interface events for each

application, each application having its own event

queue and event dispatcher thread. User interface

events were routed to the event queue of the

application whose window the event affected. Figure 3

of D1 (page 7) showed an example of multiple

applications running on a JVM, the Mtoolkit part of the

AWT (Abstract Window Toolkit) adding AWT events to the

event queue of the appropriate application.

6.2

6.3

- 14 - T 2341/16

Regarding the present main request (the same as that of

the decision), the appellant has argued that D1 did not

explicitly disclose the first platform being provided

by a mobile device, nor was this implicit in D1.

Although D1 referred to "mobile code" (section 1, 2nd

paragraph), this referred to code which was downloaded

from the network. The reference in D1 to "small"

devices (see page 2, section 2, line 8) also did not

disclose or suggest "mobile" devices. Moreover, whilst

D1 concerned a JVM running tasks for multiple different

users, mobile devices, such as smartphones and

notebooks, were typically single-user devices. Hence

there was no disclosure of the JVM of D1 running on, or

being intended to run on, a mobile device. Moreover D1,

in particular the window enclosing the GUI element at

which the user event occurred and the associated

application, did not disclose identifying a foreground

(i.e. displayed) task. D1 merely disclosed the system

maintaining a list of applications and associated

windows and, when an event was received for a window,

searching through the list to identify the associated

application to which the event was to be forwarded. In

contrast, the application stored the task ID of the

foreground task; see figure 3, steps 312 and 314.

Regarding the first auxiliary request (which was not

treated in the decision) and the third auxiliary

request (which was, as the second auxiliary request),

the appellant has argued that the amendments relate to

the storing/recalling of the task ID. The amended claim

wording sets out that, unlike in D1, the foreground

task has already been identified prior to receipt of

user input, i.e. the native event.

Regarding the second auxiliary request (the first in

the decision, the appellant has argued that the

6.4

6.5

6.6

- 15 - T 2341/16

decision merely dealt cursorily with the added features

regarding the forwarding of native events to the

foreground task. D1 did not disclose a task ID, the use

of an object associated with the task-ID to get a

handle on the event queue, encapsulating a native event

so that it could be represented as a Java event object

or the JVM notifying the event handler that the Java

event object had been queued in the Java event queue.

The board's finding on inventive step,

Article 56 EPC 1973

The main request

In view of the above discussion of D1, the subject-

matter of claim 1 differs from the disclosure of D1 in

that:

a. the first platform is provided by a mobile device

(as argued by the appellant), and

b. only one task window is displayed (the

"foreground task").

The board finds that difference features "a" and "b"

have no synergistic effect. Hence their contributions

to inventive step must be assessed separately.

The skilled person implementing the method known from

D1, which mentions no specific hardware, would at the

priority date have chosen a mobile device to provide

the first platform (feature "a"), e.g. a laptop

computer, as a usual design choice.

It does not automatically follow from the choice of a

laptop that only one task window would be displayed at

7.

7.1

7.1.1

7.1.2

7.1.3

7.1.4

- 16 - T 2341/16

a time. However the board finds that maximising a task

window, a usual measure when running a laptop

application to display a window as legibly as possible,

causes only one task window to fill the entire screen

and thus become the "foreground" task (feature "b").

Hence neither feature "a" nor "b" can lend inventive

step to claim 1.

The first auxiliary request

Editorial amendments aside, compared to the main re-

quest, claim 1 has been restricted to now also set out

storing the ID of the foreground task (see [39]) and

retrieving the ID of the foreground task (see [40]).

The appellant has argued that, unlike in D1 (see

section 5.4, page 8, right column, lines 1 to 6, and

figure 4), claim 1 sets out the foreground task having

already been identified prior to receiving user input,

i.e. the native event.

The board notes that the native events discussed in D1

are GUI events, i.e. they occur on some sort of

display. In contrast, the native events discussed in

the application are keyboard events; see page 4, lines

15 to 17. Hence, in the application the native event

itself does not identify the application/task that

should handle the event, while in D1 the window in

which a GUI event occurs identifies the application/

task. The board understands this to be the reason why

in the application the identity of the foreground task

has been previously stored (see [39], lines 1 to 3), so

that, when keyboard input occurs, the JVM can imme-

diately pass the native events to the foreground task.

7.1.5

7.2

7.2.1

7.2.2

7.2.3

- 17 - T 2341/16

Claim 1 has not however been limited to the case of

keyboard input and thus covers the case in D1 of GUI

events. In the case set out above for difference

feature "b", in which an application/task window is

maximised on the display, thus making it the

"foreground" task, all native events in D1 would be

passed to that application task, identified by its

stored identity, to be handled, the identity of all

windows and applications/tasks being stored by the JVM

as soon as they are created, as too would the fact that

a window had been maximised.

Hence the added features are unable to lend inventive

step to claim 1.

The second auxiliary request

Compared to claim 1 of the main request, claim 1 of

this request sets out the added feature, known from D1

(see abstract) that the virtual machine is a java

virtual machine (JVM). The claim also sets out the

following features which are not explicitly known from

D1:

c. the JVM uses an object associated with the task

ID to get a handle on an event queue and event

handler for the foreground task;

d. the JVM manipulates the native event to be Java

compliant by encapsulating it, so that it can be

represented as a Java event object;

e. the JVM places the Java event object in the event

queue of the foreground task and notifies the

event handler of the foreground task of this

7.2.4

7.2.5

7.3

7.3.1

- 18 - T 2341/16

fact, the handler then accessing said event

object.

According to D1, GUI events are placed (in the board's

understanding by the JVM) in the event queue of the

associated application and dispatched by a thread of

that application. Given this disclosure, it seems that

the skilled person, filling in the gaps in the disclo-

sure of D1, would have added features "c", "d" and "e",

which set out usual measures when handling events in

Java, as a matter of usual design and thus have arrived

at the subject-matter of claim 1.

Hence the added features are unable to lend inventive

step to claim 1.

The third auxiliary request

As claim 1 has been restricted using the added features

from the two previous requests, it too lacks inventive

step, Article 56 EPC 1973, for the reasons set out

above for those requests.

7.3.2

7.3.3

7.4

7.4.1

- 19 - T 2341/16

Order

For these reasons it is decided that:

The appeal is dismissed.

The Registrar: The Chairman:

L. Stridde M. Müller

Decision electronically authenticated

