BESCHWERDEKAMMERN BOARDS OF APPEAL OF CHAMBRES DE RECOURS
DES EUROPAISCHEN THE EUROPEAN PATENT DE L'OFFICE EUROPEEN
PATENTAMTS OFFICE DES BREVETS

Internal distribution code:

(A) [ -] Publication in OJ
(B) [ -] To Chairmen and Members
(C) [ -] To Chairmen
(D) [ X ] No distribution
Datasheet for the decision

of 31 May 2022
Case Number: T 2341/16 - 3.5.06
Application Number: 05858788.2
Publication Number: 1929400
IPC: GO6F9/46, GO6F9/455
Language of the proceedings: EN

Title of invention:
PROCESSING EVENTS FOR CONCURRENT TASKS IN A VIRTUAL MACHINE

Applicant:
Oracle America, Inc.

Headword:
Processing events/ORACLE

Relevant legal provisions:
EPC 1973 Art. 56, 84, 116(1)

Keyword:

Inventive step - (no)

Claims - clarity (no)

Oral proceedings - request to hold as video conference (not
allowed)

This datasheet is not part of the Decisior

EPA Form 3030 It can be changed at any time and without notice



Decisions cited:

Catchword:

This datasheet is not part of the Decisior

EPA Form 3030 It can be changed at any time and without notice



9

Eurcpiisches
Fatentamt
Eurcpean
Patent Office

Qffice eureplen
des brevets

Case Number: T 2341/16 -

Appellant:

of Technical Board of Appeal 3.5.06

(Applicant)

Representative:

Decision under appeal:

Composition of the Board:

Chairman
Members:

M. Miller
A. Teale

Beschwerdekammern
Boards of Appeal

Chambres de recours

3.5.06

DECISION

of 31 May 2022

Oracle America, Inc.
500 Oracle Parkway
Redwood City, CA 94065

D Young & Co LLP
120 Holborn
London ECIN 2DY (GB)

Boards of Appeal of the
European Patent Office
Richard-Reitzner-Allee 8
85540 Haar

GERMANY

Tel. +49 (0)89 2399-0
Fax +49 (0)89 2399-4465

Decision of the Examining Division of the
European Patent Office posted on 18 May 2016
refusing European patent application No.
05858788.2 pursuant to Article 97(2) EPC.

K. Kerber-Zubrzycka



-1 - T 2341/16

Summary of Facts and Submissions

IT.

ITI.

Iv.

This is an appeal against the decision, dispatched with
reasons on 18 May 2016, refusing European patent
application No. 05 858 788.2 on the basis that inter
alia claim 1 according to the main and first and second
auxiliary requests did not satisfy Article 56 EPC
regarding inventive step in view of the following

document:

D1l: Balfanz D. and Gong L., "Experience with Secure
Multi-Processing in Java", XP002377379, Technical
Report no. 560-97, 29 September 1997, Princeton
University, USA.

A notice of appeal and the appeal fee were received on
27 May and 6 July 2016, respectively. The appellant
requested that the application be granted.

With a statement of grounds of appeal, received on

28 September 2016, the appellant submitted amended
claims according to a new first auxiliary request. The
appellant requested that the board set aside the
decision on the basis of the main request in the
decision (present main request), said new first
auxiliary request, the first auxiliary request in the
decision (present second auxiliary request) and the
second auxiliary request in the decision (present third
auxiliary request). The appellant also requested oral

proceedings should the main request not be allowed.

In an annex to a summons to oral proceedings the board
set out its preliminary opinion on the appeal that it
had doubts regarding the inventive step, Article 56 EPC
1973, of the subject-matter of the independent method



-2 - T 2341/16

and device claims of all requests in view of Dl1. In
claims 1 and 10 of the first auxiliary request there
was no indication of the role played by retrieving the
task ID of the task currently in the foreground and
thus uncertainty and a lack of clarity, Article 84 EPC
1973, as to the technical effect of this feature and
whether it could contribute to inventive step, Article
56 EPC 1973. Moreover the expression "Java compliant"
as used in all requests had a meaning which changed
with time, thus making it unclear, Article 84 EPC 1973.

V. The appellant did not file any amendments or
substantive arguments in response to the board's

preliminary opinion.

VI. In a letter received on 1 April 2022 the appellant
referred to the Covid-19 infection rates in the United
Kingdom and in Munich and requested that the oral

proceedings be held as a video conference.

VII. In a communication dated 11 April 2022 the board noted
that there seemed to no longer be any official
limitations or impairments affecting the appellant's
ability to attend oral proceedings in person. Hence the
board was not convinced by the appellant's arguments
and still intended to hold the oral proceedings in

person.

VITITI. On 13 May 2022 the appellant's representative indicated
that the appellant would not be represented at the oral
proceedings. The board then cancelled the oral

proceedings.

IX. The application is being considered in the following

form:



XT.

- 3 - T 2341/16

Description (all requests):
pages 1, 2, 4 and 6 to 14, as originally filed, and
pages 3, 3a and 5, received on 24 February 2010.

Claims:

Main request: 1 to 12, received on 14 May 2012.
First auxiliary request: 1 to 10, received with the
grounds of appeal.

Second auxiliary request: 1 to 6, received as first
auxiliary request on 25 April 2016.

Third auxiliary request: 1 to 6, submitted as second
auxiliary request during the oral proceedings before

the examining division on 26 April 2016.

Drawings (all requests):
Pages 1/5 to 3/5 and 5/5, as originally filed, and
page 4/5, received on 24 February 2010.

Claim 1 of the main request reads as follows:

"A method of processing native events by a virtual
machine (112) that operates on a first platform (116),
wherein said first platform is provided by a mobile
device, and wherein said virtual machine concurrently
supports a first and a second task on said first
platform, said method comprising: receiving, by the
virtual machine, a native event (El) that is associated
with the first platform; determining, by said virtual
machine, which one of said first and second tasks is a
foreground task, wherein said foreground task is the
only task that is displayed; and processing, by said

foreground task, said native event."

Claim 1 of the first auxiliary request differs from
that according to the main request, editorial

amendments aside, in the addition of the following



XIT.

XITT.

XIV.

- 4 - T 2341/16

features: storing the task ID of the task which is
currently the foreground task, and retrieving, by the
virtual machine, the task ID of the task currently in

the foreground.

Claim 1 of the second auxiliary request differs from
that of the main request in the restriction of the
virtual machine to a Java wvirtual machine and the
addition of the following features:

- retrieving, by the Java virtual machine, the task ID
of the task currently in the foreground;

- using, by the Java virtual machine, an object
associated with the task ID to get a handle on an event
queue and event handler for the foreground task;

- manipulating, by the Java virtual machine, said
native event to be Java compliant by encapsulating the
native event so that it can be represented as a Java
event object;

- placing, by the Java virtual machine, the Java event
object in the event queue of the foreground task;

- notifying, by the Java virtual machine, the event
handler that the Java event object has been queued in
the event queue, and

- the foreground task, when processing said native
event, accessing the Java event object in the event

queue.

Claim 1 of the third auxiliary request combines the

amendments of the previous two requests.

Claims 4, 6 and 7 of the main and first auxiliary
requests and claims 2 and 3 of the second and third

auxiliary requests use the term "Java compliant”.



- 5 - T 2341/16

Reasons for the Decision

1. Admissibility of the appeal

In view of the facts set out at points I to III above,
the appeal fulfills the admissibility requirements

under the EPC and is consequently admissible.

2. Summary of the invention

2.1 The invention relates to a virtual machine running on a
platform, meaning a mobile device and its operating
system (see [4]), the virtual machine concurrently
supporting two tasks, for instance application
programs; see figure 1B and amended page 3, lines 6
to 7. The virtual machine comprises a native event
dispatcher which receives a native event associated
with the platform and selects the "foreground" task,
the only task being displayed (see page 8, lines 3
to 4, and figure 3; step 312), to process the native

event; see figure 3.

2.2 Computers using the "World Wide Web" (WWW) protocol to
communicate via the Internet can download and execute
small applications called "applets". Applets are
typically executed by a Java Virtual Machine (JVM),
JVMs being available for a variety of platforms; see
[2-3]. The JVM can be implemented in software by an
interpreter for the JVM instruction set; see [4] and
figure 1A. The JVM and its support libraries constitute

a Java Runtime Environment (JRE).

2.3 The source code of programs (103) written in the Java
programming language i1s structured in "classes" and
"interfaces", referred to jointly as classes or class

files. These are compiled by the Bytecode compiler



- 6 - T 2341/16

(103) to Bytecodes stored in the binary "Java class
file"™ format; see figure 1A; 105 and [7]. The Bytecodes
in the Java class file are then decoded and executed by
the JVM.

According to amended page 3, lines 3 to 7, conventional
virtual machines do not provide a multi-tasking
environment, i.e. an environment for concurrently
executing tasks, such as applets, for receiving input
from the user or other sources; see page 3, lines 8 to
15. Some tasks, for instance an interactive game,
require "event" processing (see [14]), for instance to
receive user input from a keyboard. Such processing
comprises delivering and handling external events to
the appropriate task. In a virtual machine external
events are typically generated, transmitted or
processed by hardware or software platform components.
Such platform-specific events are also referred to as
"native" events. Conventional virtual machines cannot
support two concurrent tasks if both require native

event processing: see [15].

The application concerns enabling virtual machines to
process native events for concurrent tasks in a multi-
tasking environment; see page 3, last two lines,

page 3a, last four lines, page 4, lines 23 to 27, and
page 5, lines 4 to 14. This is achieved by an event
dispatcher which delivers native events to the fore-
ground task. As shown in figure 1B, the virtual machine
112 lies between the platform 116 and the application
layer 114. Figure 1B shows two concurrent tasks (120,
122) running concurrently on the virtual machine. The
event dispatcher 118 in the virtual machine receives
native events (El1-4), for instance incoming data from a
network device or keyboard, and routes the events to

the foreground task for handling; see [26-28].



-7 - T 2341/16

Figure 1C shows the steps carried out by the dispatcher

to select a task and route an event to it; see [30].

Figure 2 shows a computing environment compliant with
the Java Specification for Mobile Information Device
Profile JST-37, for instance a phone or Personal Digi-
tal Assistant (PDA). A dispatcher 212 in the wvirtual
machine 214, implemented as an event manager thread
with wait-on-event 216 and event-dispatching logic 218,
dispatches events (El,E2) to two tasks (214, 216)
running concurrently on the virtual machine; see [33].
The wait-on-event logic 216 causes the dispatcher to
wait until an event is received, whilst the event dis-
patching logic selects the task to which the event is
to be routed. Events arrive in the event-repository
220, a FIFO (First In First Out) queue, of the
respective task and are processed by event processing
logic 223 controlled by wait-on-event logic 222. The
tasks can by associated with Mobile Information Device
Profile (MIDP) applications 224, 226 (referred to as
"midlets") in the application layer 206. In a mobile
device user interactions with the foreground task
generate native events which are processed by the
foreground task; see [37]. The associated method steps
are illustrated in figure 3; see [39-40]. Figure 3
shows the identification of each task by a task ID; see
steps 312 and 324.

The board's understanding of the claims
The mobile device set out in the independent method
claim 1 has a display and can thus, for instance, be a

mobile phone; see [4], lines 2 to 5.

Two tasks, otherwise known as applications, run

concurrently on the virtual machine, only one task,



- 8 - T 2341/16

termed the "foreground" task, being displayed. In this
context, the board understands the foreground task to
have an associated window on the device display. The
virtual machine determines which task is the foreground
task, and native events from the platform are routed to
and processed by said foreground task. The board
understands user events to be, for instance, pressing a
keyboard key or receiving data via a network; see [27].
Claim 10 of the main request further sets out the
virtual machine comprising a native event dispatcher
(118) for receiving a platform native event, deciding
which of the two concurrent tasks is the foreground

task and selecting it to process a native event.

In claim 1 of the first auxiliary request there is no
indication of the role played by retrieving the task ID
of the task currently in the foreground and thus the
effect of this feature. Hence the board finds that the
retrieval of the task ID cannot contribute to inventive

step (see below).

Clarity, Article 84 EPC 1973

In claims 4, 6 and 7 of the main request, claims 4, 6
and 7 of the first auxiliary request, claims 1, 2, 3
and 6 of the second auxiliary request and claims 1, 2
and 6 of the third auxiliary request it is unclear what
technical limitations on the native event are implied

by it being "Java compliant™".

It is firstly unclear how a native event being
processed by a JVM - or a Java compliant MIDlet -
cannot be "Java compliant". Secondly, given that the
language definition of Java has developed over time, it
is unclear what technical features are implied by a

native event being compliant with "Java". The same



-9 - T 2341/16

objection applies to the features set out in the second
and third auxiliary requests of encapsulating a native
event so that it can be represented by a "Java event

object".

Document D1

According to its abstract, Dl concerns using the Java
platform, in practice a "Java Virtual Machine"™ (JVM),
as a multi-processing, multi-user environment. D1
acknowledges that it was previously assumed that the
JVM ran only one application, for instance a web
browser fetching and executing Java "applets" from
websites; see page 1, left column, lines 20 to 28. D1
considers extending the JVM so that it can run multiple

applications.

D1 mentions "mobile code"; see page 1 in the paragraph
bridging the two columns, on page 8, left column, line
16, on page 11, right column, line 16, and on page 12,
left column, line 11. The board agrees with the
appellant that this expression does not mean that the
platform is a mobile device; it refers to the fact,
which the person skilled in the art of computing would
know, that the executable code, for instance the
applets mentioned above, is "mobile", meaning that it
may be transferred across the network to the platform

where it is executed.

D1 also refers to "a small device" (see page 2, left
column, lines 8 to 11), but the board does not under-
stand "small" to directly and unambiguously disclose
"mobile", since small computers, for instance embedded

controllers, can have a permanent, fixed location.



- 10 - T 2341/16

Considering how a single application runs on a JVM (see
page 3, section 3), a JVM has a number of threads, for
instance for garbage collection and interpreting the
Java bytecode of an application, in particular its
main () method; see page 2, right column, lines 16

to 25, and page 3, figure 1. This involves linking
classes as needed and performing necessary
initializations before using a new class; see page 3,
left column, lines 6 to 9. In the case of a Java
application using AWT (Abstract Window Toolkit)
components, a thread is started that dispatches events
and calls to (call-back) code provided by the
application; see page 3, left column, lines 45 to 47.
The board understands this to mean that a user
interface event, such as a mouse click in a window or a
key press on the keyboard, is routed by the platform
operating system to the JVM. The JVM creates an "AWT
event object" and adds it to its event queue. A
centralized event dispatcher thread of the JVM then
takes the AWT event object from the event queue and
calls the appropriate call-back method of the
associated application whose window is currently being
displayed; see page 3, figure 2 and section 3.2, "Event
dispatching”". Crucially, all callbacks are from a
single event dispatcher thread; see page 4, left

column, lines 2 to 13.

Section 4 concerns the features added to a single-
application JVM to allow secure multi-processing. Of
these, making system code multi-application-aware
(page 5, feature 6) and multi-application-aware event
dispatching (page 5, feature 7) are related and
regarded as most relevant to the present case.
According to feature 6, two users running different
instances of the same program, such as a text editor,

select the same GUI (Graphical User Interface) menu



- 11 - T 2341/16

item "save file". The JVM event dispatcher thread must
distinguish between the two cases, so that each user's
file is stored in the respective user directory. Accor-
ding to feature 7, while every application receives the
same information about the underlying operating system,
different applications can have different definitions

of the standard input and output streams.

According to section 5.1, an application is defined as
a set of Java threads; see page 6, left column,

line 17. Each application has its own name space and
memory which is inaccessible to other applications; see
page 6, left column, lines 41 to 45. As shown in

figure 3, the threads belonging to the same application
all have access to a shared application-wide state; see
page 6, right column, lines 3 to 5. Whilst in the "one
application" JVM the event dispatcher thread, which is
not associated with any application and is started then
an application opens a window, executes all callbacks
from the operating system (see section 5.4, lines 1

to 5 and footnote 5), in the multi-processing case (see
figure 4 on page 9), when an application opens a
window, the system stores the application's identity;
see page 8, section 5.4, first bullet point. Then, when
a GUI event occurs, the enclosing window and its
application are identified, and the corresponding AWT
event is added to the event queue of that application,
which was created when the application first opened a
window; see page 8, right column, lines 24 to 26. A
dispatcher thread belonging to the application then
takes the event from the event queue and dispatches
(deals with) it; see page 8, right column, lines 1

to 6. Consequently, applications queue and dispatch
events independently of each other; see page 8, right

column, lines 7 to 9.



- 12 - T 2341/16

Before the examining division the applicant argued
that, in contrast to the invention, in D1 AWT events
were handled by an AWT handler with was not part of the
JVM. In particular [4] of the description stated that
the support libraries were not part of the JVM. Events
received and handled by the AWT were no longer "native"
events once they passed to the JVM. D1 also did not
mention foreground tasks, merely disclosing a mapping
between applications and windows. The examining
division saw the AWT component as a runtime library

which was used by the JVM for event handling.

The board understands an AWT event to result from a
native event being passed via the platform operating
system to the JVM. It is certainly possible that the
JVM calls routines from support libraries to handle
such AWT events. However the board agrees with the
examining division that, in doing so, the support
libraries are acting as the agent of the JVM and thus

form part of the functionality of the JVM.

Inventive step, Article 56 EPC 1973

According to the appealed decision, the subject-matter
of claim 1 of the main request differed from the
disclosure of D1 in that the foreground task was the
only displayed task. In contrast, in D1 several
application windows (foreground tasks) might be open
and thus displayed. Having only one displayed task
solved the objective technical problem of maximising
the display space for a task, this being common general
knowledge in the field of graphical user interfaces
(GUIs) . Moreover, it was common general knowledge to
process user input events by the application to which
the window belonged and in which the input occurred,

this being the relevant window. If only one window/task



- 13 - T 2341/16

was displayed, then it was obvious for this task to
process the event. Hence claim 1 covered the approach
known from D1 for the case of only one application

window being open.

Turning to what are now the second and third auxiliary
requests (the first and second auxiliary requests in
the decision), the examining division found that the

features added to claim 1 were known from DI1.

In the grounds of appeal the appellant argued that
conventional virtual machines lacked a mechanism for
processing native events, such as keyboard input, for
concurrently executed tasks. This meant that only one
task requiring native event processing could be execu-
ted at a time or, as the description puts it, two tasks
cannot be used concurrently if they both require native
event processing; see [15] of the application as
originally filed. The virtual machine according to the
application overcame this restriction by providing an
event-dispatcher which delivered native events to the
foreground task running concurrently on a virtual
machine on a mobile device. D1 related to the
difficulties of using a JVM, which was usually used to
run a single application, to instead run multiple
applications for multiple users. This required a
separate handling of user interface events for each
application, each application having its own event
queue and event dispatcher thread. User interface
events were routed to the event queue of the
application whose window the event affected. Figure 3
of D1 (page 7) showed an example of multiple
applications running on a JVM, the Mtoolkit part of the
AWT (Abstract Window Toolkit) adding AWT events to the

event queue of the appropriate application.



- 14 - T 2341/16

Regarding the present main request (the same as that of
the decision), the appellant has argued that D1 did not
explicitly disclose the first platform being provided
by a mobile device, nor was this implicit in DI.
Although D1 referred to "mobile code" (section 1, 2nd
paragraph), this referred to code which was downloaded
from the network. The reference in D1 to "small"
devices (see page 2, section 2, line 8) also did not
disclose or suggest "mobile" devices. Moreover, whilst
D1 concerned a JVM running tasks for multiple different
users, mobile devices, such as smartphones and
notebooks, were typically single-user devices. Hence
there was no disclosure of the JVM of D1 running on, or
being intended to run on, a mobile device. Moreover D1,
in particular the window enclosing the GUI element at
which the user event occurred and the associated
application, did not disclose identifying a foreground
(i.e. displayed) task. Dl merely disclosed the system
maintaining a list of applications and associated
windows and, when an event was received for a window,
searching through the list to identify the associated
application to which the event was to be forwarded. In
contrast, the application stored the task ID of the
foreground task; see figure 3, steps 312 and 314.

Regarding the first auxiliary request (which was not
treated in the decision) and the third auxiliary
request (which was, as the second auxiliary request),
the appellant has argued that the amendments relate to
the storing/recalling of the task ID. The amended claim
wording sets out that, unlike in D1, the foreground
task has already been identified prior to receipt of

user input, i.e. the native event.

Regarding the second auxiliary request (the first in

the decision, the appellant has argued that the



1.

1.

1.

- 15 - T 2341/16

decision merely dealt cursorily with the added features
regarding the forwarding of native events to the
foreground task. D1 did not disclose a task ID, the use
of an object associated with the task-ID to get a
handle on the event queue, encapsulating a native event
so that it could be represented as a Java event object
or the JVM notifying the event handler that the Java

event object had been queued in the Java event queue.

The board's finding on inventive step,
Article 56 EPC 1973

The main request

In view of the above discussion of D1, the subject-
matter of claim 1 differs from the disclosure of D1 in
that:

a. the first platform is provided by a mobile device

(as argued by the appellant), and

b. only one task window is displayed (the

"foreground task").

The board finds that difference features "a" and "b"
have no synergistic effect. Hence their contributions

to inventive step must be assessed separately.

The skilled person implementing the method known from
D1, which mentions no specific hardware, would at the
priority date have chosen a mobile device to provide
the first platform (feature "a"), e.g. a laptop

computer, as a usual design choice.

It does not automatically follow from the choice of a

laptop that only one task window would be displayed at



- 16 - T 2341/16

a time. However the board finds that maximising a task
window, a usual measure when running a laptop
application to display a window as legibly as possible,
causes only one task window to fill the entire screen

and thus become the "foreground" task (feature "b").

Hence neither feature "a" nor "b" can lend inventive

step to claim 1.

The first auxiliary request

Editorial amendments aside, compared to the main re-
quest, claim 1 has been restricted to now also set out
storing the ID of the foreground task (see [39]) and
retrieving the ID of the foreground task (see [40]).

The appellant has argued that, unlike in D1 (see
section 5.4, page 8, right column, lines 1 to 6, and
figure 4), claim 1 sets out the foreground task having
already been identified prior to receiving user input,

i.e. the native event.

The board notes that the native events discussed in D1
are GUI events, i.e. they occur on some sort of
display. In contrast, the native events discussed in
the application are keyboard events; see page 4, lines
15 to 17. Hence, in the application the native event
itself does not identify the application/task that
should handle the event, while in D1 the window in
which a GUI event occurs identifies the application/
task. The board understands this to be the reason why
in the application the identity of the foreground task
has been previously stored (see [39], lines 1 to 3), so
that, when keyboard input occurs, the JVM can imme-

diately pass the native events to the foreground task.



L2,

- 17 - T 2341/16

Claim 1 has not however been limited to the case of
keyboard input and thus covers the case in D1 of GUI
events. In the case set out above for difference
feature "b", in which an application/task window is
maximised on the display, thus making it the
"foreground" task, all native events in D1 would be
passed to that application task, identified by its
stored identity, to be handled, the identity of all
windows and applications/tasks being stored by the JVM
as soon as they are created, as too would the fact that

a window had been maximised.

Hence the added features are unable to lend inventive

step to claim 1.

The second auxiliary request

Compared to claim 1 of the main request, claim 1 of
this request sets out the added feature, known from D1
(see abstract) that the virtual machine is a java
virtual machine (JVM). The claim also sets out the
following features which are not explicitly known from
D1:

c. the JVM uses an object associated with the task
ID to get a handle on an event queue and event

handler for the foreground task;

d. the JVM manipulates the native event to be Java
compliant by encapsulating it, so that it can be

represented as a Java event object;

e. the JVM places the Java event object in the event
queue of the foreground task and notifies the

event handler of the foreground task of this



.3.

- 18 - T 2341/16

fact, the handler then accessing said event

object.

According to D1, GUI events are placed (in the board's
understanding by the JVM) in the event queue of the
associated application and dispatched by a thread of
that application. Given this disclosure, it seems that
the skilled person, filling in the gaps in the disclo-
sure of D1, would have added features "c", "d" and "e"
which set out usual measures when handling events in
Java, as a matter of usual design and thus have arrived

at the subject-matter of claim 1.

Hence the added features are unable to lend inventive

step to claim 1.

The third auxiliary request

As claim 1 has been restricted using the added features
from the two previous requests, it too lacks inventive
step, Article 56 EPC 1973, for the reasons set out

above for those requests.



Order

For these reasons it

The appeal is dismissed.

The Registrar:

L. Stridde

T 2341/16

is decided that:

The Chairman:

4
/:;99”01@ auyy®
Spieog ¥

3 o

&
&

2
(4

M. Miuller

Decision electronically authenticated



