Invention: Medical imaging with optical coherence tomography (OCT)
Doctors can now create real-time images of human tissue for early detection of cancer, glaucoma and other ailments thanks to US engineers James G. Fujimoto and Eric A. Swanson and German physicist Robert Huber. Their breakthrough imaging technology, optical coherence tomography (OCT), is now standard procedure for eye examinations.
Premiered as a clinical prototype in 1993, OCT solves a
long-standing problem in diagnostic medicine: accurate evaluation of soft body
tissue and blood vessels - key to diagnosing cancer and cardiovascular diseases
- without invading the body. Biopsies have long been used, but they require
tissue samples from the area in question and have never been considered an
ideal method. The first imaging method of its kind, OCT creates an optical
biopsy: real-time, 3-D images of soft tissue at microscopic resolutions.
Fujimoto and Swanson started developing the technology in 1990 at the Massachusetts Institute of Technology (MIT) in Boston, ultimately filing more than 50 patents in the process. Their breakthrough was to aim a laser at soft body tissue and measure the "echo", i.e. the time delay of the light beams. Originally developed for ophthalmology, OCT has become the standard for eye care, with 30 to 40 million imaging procedures performed each year.
After commercial OCT devices for ophthalmology became available in 1996, the technology was adapted to other medical fields: cardiovascular OCT scanners appeared in 2004, followed by dermatological OCT in 2010 and gastrointestinal OCT in 2013.
Societal benefit
Glaucoma is the second leading cause of blindness worldwide, with current studies estimating the number of suspected cases at over 60 million. Early diagnosis - now possible with OCT - is the key to preventing further loss of vision. The technology has given doctors a new tool to diagnose serious eye diseases at early, treatable stages, preventing vision loss and serious complications in countless cases.
Through its widespread availability and coverage by major insurance companies, OCT has helped reduce costs for patients and caregivers. In newer applications such as gastroenterology, virtual endoscopy of the gastrointestinal tract using OCT could save over EUR 600 million per year. The technology's capacity for live imaging during surgery has increased safety in the operating room. It has contributed to pharmaceutical drug development and advanced understanding of the cause of diseases.
OCT also unlocks new levels of precision in genetic research, materials quality control, art conservation and optical data storage.
Economic benefit
Key technologies developed and patented by Fujimoto and his team were acquired by optical and optoelectronics firm Carl Zeiss, currently a market leader in the field. In fiscal 2015/2016, the company's Ophthalmic Systems unit - home to OCT solutions - generated revenues of EUR 421 million, a 7.5% increase over the EUR 392 million revenue of the previous year.
The team founded start-ups of its own, including Advanced Ophthalmic Devices in 1992 and LightLab Imaging in 1998 (Fujimoto and Swanson), and Optores GmbH in 2013 (Robert Huber). The invention has spawned a thriving market with considerable start-up activity: the OCT industry employs roughly 16 000 professionals, ranging from engineers to hospital staff. Over 100 companies currently supply OCT systems and components, and more than 50 000 clinical OCT systems have been installed worldwide.
A true blockbuster technology, OCT created total revenues upwards of EUR 4.77 billion between 1996 and 2016. Analysts at BioOpticsWorld estimated global revenues from OCT systems in 2015 at EUR 688 million. Experts at Research and Markets expect the OCT market to grow at a compound annual growth rate of 12%, ultimately reaching over EUR 1.5 billion by 2020.