Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventors Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Technologies
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • Core activities
          • Stories and insights
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Technologies
        • Go back
        • Overview
        • Innovation against cancer
        • Assistive robotics
        • Space technologies
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
          • Go back
          • Overview
          • Publications
        • Research universities and public research organisations
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2024
          • Go back
          • Overview
          • Executive summary
          • Driver 1 – People
          • Driver 2 – Technologies
          • Driver 3 – High-quality, timely products and services
          • Driver 4 – Partnerships
          • Driver 5 – Financial Sustainability
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0530/07 19-11-2009
Facebook X Linkedin Email

T 0530/07 19-11-2009

European Case Law Identifier
ECLI:EP:BA:2009:T053007.20091119
Date of decision
19 November 2009
Case number
T 0530/07
Petition for review of
-
Application number
99943514.2
IPC class
E01C 19/28
Language of proceedings
EN
Distribution
NO DISTRIBUTION (D)

Download and more information:

Decision in EN 145.12 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

System for predicting compaction performance

Applicant name
CATERPILLAR INC.
Opponent name
BOMAG GmbH
Board
3.2.03
Headnote
-
Relevant legal provisions
European Patent Convention Art 54
European Patent Convention Art 56
Keywords

Admissibility of late-filed evidence (yes)

Novelty (yes)

Inventive step (no)

Catchword
-
Cited decisions
G 0009/91
T 0641/00
T 0258/03
T 0619/02
Citing decisions
T 1396/15

I. The appeal lies from the interlocutory decision of the Opposition Division dated 24 January 2007 and posted on 6 February 2007, to maintain European patent No. 1 141 487 in amended form based on the auxiliary request as filed on 21 December 2006 (Article 102(3) EPC 1973). Grant of the patent had been opposed on the grounds of lack of novelty and inventive step (Article 100(a) EPC).

II. The Appellant (Opponent) filed a notice of Appeal on 27 March 2007, paying the appeal fee on the same day. The statement of grounds of appeal was submitted on 18 June 2007.

III. A communication in compliance with Article 15(1) RPBA was issued together with a summons to attend oral proceedings, and the Appellant subsequently filed, among others, a new document E16 on 19 October 2009. The oral proceedings were duly held on 19 November 2009. At the beginning of the oral proceedings, a fresh ground for opposition pursuant to Article 100(b) EPC was raised by the Appellant.

IV. The Appellant requested that the decision under appeal be set aside and the patent be revoked.

The Respondent (Proprietor) requested that the appeal be dismissed.

V. The wording of claim 1, as maintained by the Opposition Division, reads as follows:

"1. A method for predicting compaction performance, comprising the steps of:

measuring values representative of material density after at least a first and second pass by a compaction machine;

determining a compaction response curve (10,12,14) from said measured values; and

predicting from said response curve (10,12,14) a number of passes by the compaction machine required to reach a desired density for the material; and displaying said number of passes,

said step of determining a compaction response curve (10,12,14) further comprising computing a predicted maximum density and an inflection point defining said curve (10,12,14)."

VI. The following evidence has been considered for the purposes of the present decision:

E4 = "Merkblatt für das Verdichten von Asphalt, Teil 2 Theorie der Verdichtung"; Forschungsgesellschaft für Straßen- und Verkehrswesen, Ausgabe 1993

E16 = "Asphaltstraßentagung 1997, Vorträge der Tagung der Arbeitsgruppe Asphaltstraßen am 5. und 6. Juni 1997 in Weimar"; Forschungsgesellschaft für Strassen - und Verkehrswesen - Köln, Schriftenreihe der Arbeitsgruppe "Asphaltstrassen", Heft 33; Kirschbaum Verlag GmbH, Bonn, August 1998.

VII. The parties submitted the following arguments:

VII.1 Admissibility of evidence

(a) E16 was filed late by the Appellant, after the Board had issued the summons to oral proceedings. The Appellant argued that document E16 was in public circulation before the priority date of the patent, since it was produced by the "Forschungsgesellschaft für Strassen- und Verkehrswesen", whose purpose was to inform the road construction industry about new findings at the time. Moreover, E16 had to be considered prima facie more relevant than the prior art on file, since experiments in the lab with the aid of the well-known Marshall method were subsequently confirmed in E16 by a field experiment with road rollers.

(b) The Respondent did not object to the public availability of E16. However, the document was submitted too late, and not prima facie more relevant than those on file. Therefore, it should not be admitted into the proceedings.

VII.2 Interpretation and technical nature of claim 1

(a) The Appellant argued that, compared to claim 1 as granted, method claim 1 now described the vague calculation of two parameters to define a compaction curve, namely a maximum density and an "inflection point". This curve was not further specified, in particular not all curves relating to the exponential function according to equation number two of the patent specification were included in the definition of claim 1. However, a non-technical feature in the form of a mathematical formula to compute these two parameters had been added to the subject-matter of the claim. Although present claim 1 was technical as a whole, the mere computation, based on such a formula, was not a technical feature. Since the Opposition Division held that claim 1 as granted was not novel over the known prior art, it followed from T 641/00 (OJ EPO, 2003, 352), that the introduction of a non-technical feature could establish neither novelty nor the presence of an inventive step with regard to this prior art.

(b) The Respondent argued that, the specification of the shape of the response curve in claim 1 was a matter of clarity, and thus no ground for opposition. Moreover, the formula used to compute the two parameters for defining the curve had to be considered in context with the other features of the claim. Since it was used for operating a compaction machine and resulted in an improved compaction efficiency, the formula was embedded in the claimed method. Therefore, the method step of computing a predicted maximum density and an inflection point in order to determine the response curve was technical.

VII.3 Novelty of claim 1

(a) The Appellant argued that, the purpose of document E16's research work, as described on page 49, left hand column, was the calculation of compaction performance to determine the quality of asphalt compaction. To this end, compaction experiments in the field had been carried out, monitoring the increase of material density as a function of the compaction work by a road roller. The increase in density followed a curve in the form of an exponential function and thus corresponded to the law of growth ("Wachstumsgesetz") generally known from laboratory experiments for compaction work. According to E16 on page 51, second and third column, and page 52, first and second column, the desired material density ("Verdichtungsgrad k") of a compaction process in the field can be determined by this exponential function dependent upon the number of roller-passes ("Walzübergangszahl"), and therefore a prediction of compaction performance of a compaction machine was disclosed by E16.

As was stated in E16 on page 50, third column, headed "5. Versuchsergebnisse", the material densities and thus the desired densities capable of being achieved continuously increased with increasing number of roller-passes. Thus, after each roller-pass the material density had to be measured by means of the described drill core samples in order to notice an increase in density. Since claim 1 did not suggest any sequence of calculations, it did not matter whether the drill core samples were analysed at a later point of time or not. In calculating the number of roller-passes by use of the converted logarithmical formula of the compaction curve in figure 5 of E16, only the starting density "?A0", and the densities "?A(n)" after each pass could be determined by measurements. Thus, the remaining parameters maximum density "?A?" and constant "Walzwiderstand W" were unknown, and had to be derived from the formula by solving a system of two equations with respect to these two variables, in a similar way to establishing the two unknown parameters of claim 1, namely the predicted maximum density and the constant "inflection point". The constant "Walzwiderstand W" of this formula indeed corresponded to the "inflection point k" of claim 1 of the patent, since the influences on compaction which were derivable from table 1 and 2 on page 49 of E16 were also part of a specific compaction resistance in the form of the "inflection point k". When the equations were solved, the required number of passes for any "Verdichtungsgrad k", ie any desired density, could be readily predicted from the formula and eventually also had to be displayed. Therefore claim 1 lacked novelty over the disclosure of E16.

(b) The Respondent argued that E16 concerned discussions of experiments in the lab and field. According to page 53, headed "8. Schlußfolgerungen", the document only disclosed the confirmation of the theoretical results of the lab by those measured in the field.

E16 firstly did not disclose a prediction of how many passes of the compaction machine in figure 1 of E16 were required to reach a target density, and that the number of passes had to be displayed.

Secondly, no measuring after each pass was disclosed, rather, the drill core samples after the compaction experiments had been finished were analysed: cf. E16, page 50, third column, second and third paragraph. Referring in particular to the roller-passes shown in figure 1 of E16, the measuring of material densities was not done "on the go" by means of density sensors, such as described in the patent, while the machine is operating, but by the analysis of drill core probes "BK". Thus, a sequence of measuring, computing and displaying according to claim 1 was not derivable from E16.

Thirdly, the Respondent admitted that the formula in figure 5 on page 51 of E16 could be rewritten to correspond to equation number two of the patent, that an initial density and densities relating to a first and second pass had to be analysed (ie measured) from the drill core samples as part of the procedure in E16, and that the maximum density had also to be calculated in E16. However, the Respondent submitted that the parameter "Walzwiderstand W" of E16 was not the same as the "inflection point k" of claim 1 of the patent. As derivable from the specification of the patent, the "inflection point k" was decisive for the behaviour of the respective (compaction) curve, and had the values one, two or four. Thus, it merely involved a mathematical factor, rather than the actual compaction resistance, ie the "Walzwiderstand W" as described by E16. Moreover, no use of E16's formula to compute both a maximum density and an "inflection point" was disclosed by E16. Therefore, for these reasons, claim 1 was novel with respect to E16.

VII.4 Inventive step of claim 1

(a) Starting from E16 as closest prior art, the Appellant reiterated that compaction performance was predicted by the number of passes, which was derivable from the compaction curve as described by the formula in figure 5 of E16. Prior to determining the number of roller-passes, both unknown parameters must be determined, that is, the maximum density "rho Alpha infinity" and the constant "W"; such a calculation would be easier for the skilled person to carry out than obtaining an analysis of the value "W" in the lab. Therefore, claim 1 was not inventive in the light of E16.

(b) The Respondent did not dispute that the number of passes could be calculated from the formula of E16, and that the skilled person could play with the equation disclosed therein. However, based on E16, he was not given any incentive to compute the parameters maximum density and "inflection point" for the purpose of predicting a number of passes required to reach a desired density. Thus, based on prior art E16, claim 1 was not obvious.

1. The appeal is admissible.

2. Fresh ground for opposition

The fresh ground of insufficiency of disclosure (Article 100(b) EPC) was raised by the Appellant. However, the Respondent did not agree to the introduction of this ground into the proceedings.

See G 9/91 (OJ EPO 1993, 408), point 18 of the Reasons. It was therefore not admitted into the proceedings by the Board.

3. Admissibility of evidence

The document E16, filed one month before the oral proceedings, describes a field experiment by use of a compaction machine, viz. a road roller, and a comparison is made with compaction experiments in the laboratory. The compaction work in the field apparently also follows an exponential growth curve already known from the lab: cf. E16; page 51, figures 3, 5 and 6. Given that the field experiment of E16 is very closely related to the subject-matter of claim 1, the Board considered E16 prima facie more relevant than in particular the earlier filed document E4, which describes an exponential compaction curve only in context with a Marshall test in the lab: cf. E4; pages 5 and 6, points 2 and 3, and figure 1. The publication of E16 prior to the filing date of the patent was not disputed by the Respondent, and also the Board has no reason to doubt its public availability. Moreover, the Respondent had had sufficient time (about 1 month) to consider the disclosure of E16. The Board thus exercised its discretion under Article 13(3) RPBA to admit the document E16 to the proceedings at that late stage.

4. Interpretation of the features of claim 1 and their technical nature

4.1 The Board agrees with the Appellant's view, that the term "inflection point" as referred to in present claim 1 is vague, since it usually defines a point on a curve at which the sign of the curvature, ie its concavity, changes. However, since present claim 1 is based on claims 1 and 3 as granted, this clarity objection did not arise out of an amendment of claims and is therefore, according to the established case law of the Boards of Appeal, not allowable under Article 102(3) EPC 1973. Thus, the "inflection point" of claim 1 has to be interpreted in the light of the patent as a whole, including the specification. The skilled person would readily recognize from paragraphs [0013],[0014] and [0018] of the patent, that such an "inflection point" had to be understood as a constant "k", which was inherent to a compaction curve, and depended on the material to be compacted. Moreover, since it is generally known in the art that material compaction follows a law of growth in the form of an exponential curve, the skilled person would take such an exponential function as a basis for determining the curve described in claim 1 as well as those of E16: cf. E16; page 50, third column to page 51, first column, bridging paragraph; page 51, first column, first main paragraph, first five lines.

The equations one and two described in paragraphs [0013] and [0014] of the specification are based on exponential functions to calculate a compaction density. The compaction density "gamma n" of the disputed patent depends on the number of passes "n" of the compaction machine, the starting density "gamma 0", and on the constants, predicted maximum density "gamma max" and "inflection point k" (cf. in particular equation number two of paragraph [0014]).

4.2 In order to carry out the method of claim 1, the parties agreed that usually, prior to starting compaction, an initial density "gamma 0" of the material has to be measured (see paragraph [0021] of the patent). Moreover, according to claim 1, at least two material densities, ie "gamma n=1" and "gamma n=2", are measured after each pass, ie n=1 and n=2, by a compaction machine. A system of two equations with respect to two unknown variables, the predicted maximum density "gamma max" and the inflection point "k", can now be solved, to determine a compaction response curve of claim 1 from the (three) measured values. After "gamma max" and "k" have been computed, a specified desired compaction density "gamma spec" is inserted into the equation, and the equation is finally solved for the number of passes "n", at which this desired density "gamma spec" will be reached (see paragraphs [0017] and [0018] of the patent). The number of passes is then displayed, thereby predicting the compaction performance of the compaction machine.

4.3 As regards the character of the subject-matter of claim 1, it is well established case law of the Boards of Appeal that it is legitimate to have a mixture of technical and non-technical features in a claim, ie the measuring and displaying as well as the computing of values based on a mathematical formula as claimed in claim 1 defines a patentable invention within the meaning of Article 52(2) and (3) EPC. This was acknowledged by the Appellant, and indeed has not been raised as a ground for opposition. In the view of the Board, whether the method step of computing two parameters by use of an equation is a technical feature giving rise to a patentable invention lies within the framework of the examination as to inventive step (cf. points 6.3 and 6.4 below). See CLBA 5th edition 2006, I.D.8.1.1, in particular T 641/00 (supra), points 4 to 6 of the Reasons, and T 258/03 (OJ EPO, 2004, 575).

5. Novelty of claim 1

(Article 100(a) EPC, see Article 54 EPC)

5.1 Document E16 describes a comparison of compaction experiments in the laboratory and field: cf. E16; page 50, third column, headed "5.Versuchsergebnisse", to page 52; see in particular figures 3,4 and 6. Moreover, based on this comparison, the inference is drawn in E16 that, owing to the close relationship between the compaction results of lab and field, a prognosis of the required number of roller-passes ("erforderliche Walzübergangszahl") to achieve optimal compaction results may be based on compaction properties determined for the material to be rolled by a laboratory test beforehand: cf. E16; page 52, third column, second last and last paragraph of chapter "5. Versuchsergebnisse", and page 53, last paragraph of chapter "8. Schlußfolgerungen".

However, according to the field experiment in E16, for each of the compaction variants using the bituminous mixture "AB 0/11 S" ("Mischgutsorte"), the required number of passes "n(k)" ("Walzübergangszahlen") of the road roller required reach a specific desired density "k = 94% to 100%" ("Verdichtungsgrad k") is calculated, and the results are shown in figure 6: cf. page 51, third column to page 52, third column, first paragraph, and figure 6 (of the chapter "5. Versuchsergebnisse"). These calculations are based on in situ drill-core samples of the field experiment, obtained after the material has been rolled by the road roller, ie by a compaction machine.

Since the subject-matter of claim 1 addresses any compaction by a compaction machine, experimental compaction in the field is also encompassed by claim 1. A method for predicting the compaction performance, based on a prediction of the number of passes required to reach a desired density for the material analysed in situ is thus, contrary to the Respondent's view, described by E16.

5.2 Irrespective whether the drill core samples ("BK") in figure 1 of E16 were analysed at a later point of time, E16 nevertheless implicitly discloses measuring values of material density each time the road roller has passed over the field of compaction ("Walzfeld"). Otherwise it could not have been stated in E16 that, with an increasing number of passes, the material densities, and thus also the desired densities, continuously increased and tended towards a limit: cf. E16, page 50, third column, first main paragraph and forth main paragraph ("...kontinuierlich ansteigen..."). This was not disputed by the Respondent.

Furthermore, contrary to the Respondent's view, claim 1 neither suggests any sequence of measuring and computing, nor describes any particular means of measurement, such as density sensors fitted to the compaction machine. Thus, the Board agrees with the argument of the Appellant that the method step of measuring values representative of material density after at least a first and second pass by a compaction machine is disclosed by E16.

5.3 As regards the formula used to define the compaction curve and to calculate the number of passes required to reach a desired density, the Respondent conceded that the equation indicated as "physikalisch" in figure 5 on page 51 of E16 could be rewritten in the form of equation number two of the patent: cf. patent; column 3, paragraph [0014], at line 23. It follows from a comparison of the equations of E16 and the patent, respectively, that the number of roller-passes "n" ("Walzübergangszahl") corresponds to the number of passes "n" in the patent, the starting density "roh Alpha 0" ("Anfangsraumdichte") to the initial density "gamma 0", the arbitrary density "rho Alpha(n)" ("beliebige Raumdichte") to the density "gamma n", and the maximal reachable density "rho Alpha infinity" ("maximal erreichbare Raumdichte") to the predicted maximum density "gamma max".

Furthermore, referring to the described values one, two or four of the embodiment in column 3 at lines 38 and 39 of the patent, the skilled person would not derive any teaching from the patent specification, let alone from the subject-matter of claim 1, as to how compaction influences the "inflection point" differently from the compaction resistance "W" ("Walzwiderstand") described by E16. The influences on the compaction resistance are derivable from tables 1 and 2 on page 49 of E16. Since these influences, as argued by the Appellant, must also impact on the factor "inflection point k", the latter is also considered to imply a specific compaction resistance. Thus, in the Board's view, the compaction resistance "W" of E16's equation corresponds to the "inflection point k" of equation number two of the patent.

5.4 As to the determination of the compaction response curve in E16, the parties agreed that a starting density "rho Alpha 0" ("Anfangsraumdichte") is established, and densities "rho Alpha(n=1)" and "rho Alpha(n=1)" ("Raumdichten") are measured after each pass n=1 and n=2 by analysing the respective drill core samples. Referring again to the formula "physikalisch" in figure 5 of E16, two more variables, namely the maximal reachable density "rho Alpha infinity" and the compaction resistance "W" need to be determined to define the compaction curve described by the formula. A system of two equations, i.e. for the values n=1 and n=2, can now be solved with respect to the two unknown quantities: maximal reachable density "rho Alpha infinity" and compaction resistance "W". The parties agreed that the maximal reachable density "rho Alpha infinity" has to be determined by solving an equation based on the formula in figure 5 of E16. However, as argued by the Respondent, E16 does not disclose that the parameter defining the compaction resistance "W" must necessarily be solved from a system of two equations with respect to this variable. In the view of the Board, the compaction resistance "W" could likewise be determined by the skilled person by means of, for example, the generally known Marshall test apparatus. Therefore, the choice of a method step to compute the compaction resistance "W" (corresponding to the inflection point "k" of claim 1) by use of the formula in figure 5 of E16, thereby solving a system of two equations in particular with respect to the variable compaction resistance "W", is not disclosed by E16.

5.5 Moreover, E16 teaches that the arbitrary density "rho Alpha(n)" is defined as a function of the desired extent of compaction ("Verdichtungsgrad k"), such that for any extent of compaction, the required compaction performance, ie the number of roller-passes "n", can be calculated: cf. E16; page 51, first column, third main paragraph ("Zweckmäßigerweise ...") to page 52, right column, first paragraph; the equation "erforderliche Walzarbeit n(k,T)" in figure 5; and figure 6. After the variables of the compaction curve described by the formula "physikalisch" in figure 5 of E16 have been determined, the formula is further developed into the logarithmic equation "erforderliche Walzarbeit n(k,T)" in figure 5 of E16 and the number of passes are calculated. It is reiterated that, therefore, the method step of predicting the number of passes by the compaction machine required to reach a desired density is disclosed by E16.

5.6 Finally, as argued by the Appellant it is implicit that the calculated number of passes has to be displayed by means of display means of some description. For example, in E16, the number of passes is displayed in the form of a graph: cf. figure 6.

5.7 To conclude, the subject-matter of claim 1 differs from the disclosure of E16 only in that the step of determining a compaction response curve further comprises computing, ie calculating, not only a predicted maximum density, but also an inflection point. Novelty over the remaining prior art was not disputed by the Appellant and is also acknowledged by the Board.

Thus, the subject-matter of claim 1 meets the requirements of Article 54 EPC.

6. Inventive step of claim 1

(Article 100(a) EPC, see Article 56 EPC)

6.1 The disclosure of E16 (see point 4 above) is considered as providing a suitable starting point for the assessment of inventive step. As pointed out above with respect to the novelty of claim 1, the subject-matter of claim 1 differs from the disclosure of E16 in that the step of determining a compaction response curve further comprises computing an inflection point defining the curve.

6.2 In the light of E16, the problem to be solved can be seen as the provision of a different means for determining of the parameter inflection point, in order to define the compaction response curve following a known mathematical equation.

6.3 Following the well established case law, the presence of an inventive step can only be established on the basis of technical "aspects" (or "contributions") of both

(i) the distinguishing features (ie in the present case tangible features of the implementation of the mathematical equation and its parameters) and

(ii) the effects achieved by the claimed invention over the nearest prior art.

See CLBA 5th edition 2006, I.D.8.1.1.2, in particular T 641/00 (supra), points 5 and 6 of the Reasons and T 619/02 (OJ 2007,***), point 4.2 of the Reasons.

6.4 Firstly, regarding (i), the claimed subject-matter is distinguished from E16 by the manner by which the compaction curve is derived. To this end, the mathematical formula defining the compaction response curve of claim 1 is not claimed as such, but rather the measured density values, themselves having a technical character, are inserted into the formula, which is then used for calculating the number of passes the compaction machine has to make. Thus, the use of this formula in a technical context as opposed to a formula per se, including the calculation of both the predicted maximum density and the inflection point, is considered to be technical by the Board.

Secondly, concerning (ii), the effect of the distinguishing feature is to provide an alternative way of determining the number of passes the compaction machine makes, this being a technical effect.

Therefore, the distinguishing feature of the subject-matter of claim 1 with respect to the closest prior art E16 contributes to the solution of a technical problem, and thus to the presence of an inventive step.

6.5 However, starting from E16 the skilled person would consider generally known test methods such as the Marshall test for determining the compaction resistance "W". On the other hand, the skilled person would also realise that the three measured densities disclosed in E16, ie the starting density "rho Alpha 0", and the densities after a first and second pass "rho Alpha(n=1)" and "rho alpha(n=2)", are sufficient to solve a system of two equations for determining the compaction resistance "W".

6.6 Since both ways in E16 of determining the compaction resistance "W", which corresponds to the inflection point ("k") of claim 1, are commonly known alternatives, the choice of one of these, ie the calculation of an inflection point as claimed in claim 1, is an obvious choice for the skilled person, irrespective whether the calculation is easier than analysing by means of tests methods, as argued by the Appellant, or not.

Therefore, the subject-matter of claim 1 does not involve an inventive step.

7. Conclusion

In summary, the independent method claim 1 is not allowable because the ground of opposition under Article 100(a) EPC (Article 56 EPC) relied on by the Appellant prejudices the maintenance of the patent.

Order

For these reasons it is decided that:

1. The decision under appeal is set aside.

2. The patent is revoked.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility