Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Digital agriculture
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    EPO TIR study-Agriculture-web-720 x 237

    Technology insight report on digital agriculture

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning
      • Fee Assistant
      • Fee reductions and compensation

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventors Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Technologies
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Overview
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Digital agriculture
        • Go back
        • Overview
        • Plant agriculture
        • Artificial growth conditions
        • Livestock management
        • Supporting technologies
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Taiwan, Province of China (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
      • Fee Assistant
      • Fee reductions and compensation
        • Go back
        • Fee support scheme insights
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
      • International treaties
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • Overview
        • 2026 activities
        • 2025 activities
        • 2024 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • CodeFest
        • Go back
        • CodeFest 2026 on patent and IP portfolio (e)valuation
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Future of medicine: Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • Core activities
          • Stories and insights
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Technologies
        • Go back
        • Overview
        • Innovation against cancer
        • Assistive robotics
        • Energy enabling technologies
          • Go back
          • Overview
          • Publications
        • Energy generation technologies
        • Water technologies
        • Plastics in transition
        • Space technologies
        • Digital agriculture
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
          • Go back
          • Overview
          • Publications
        • Research universities and public research organisations
        • Women inventors
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Observatory tools
        • Go back
        • Overview
        • Deep Tech Finder
        • Digital Library on Innovation
          • Go back
          • Overview
          • Become a contributor to the Digital Library
      • About the Observatory
        • Go back
        • Overview
        • Work plan
        • Collaboration with European actors
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2024
          • Go back
          • Overview
          • Executive summary
          • Driver 1 – People
          • Driver 2 – Technologies
          • Driver 3 – High-quality, timely products and services
          • Driver 4 – Partnerships
          • Driver 5 – Financial Sustainability
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Overview
        • Catalyst lab & Deep vision
          • Go back
          • Overview
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions and opinions (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0215/98 12-01-2000
Facebook X Linkedin Email

T 0215/98 12-01-2000

European Case Law Identifier
ECLI:EP:BA:2000:T021598.20000112
Date of decision
12 January 2000
Case number
T 0215/98
Petition for review of
-
Application number
91200156.7
IPC class
G02F 1/39
H04B 10/16
H01S 3/30
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 36.89 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Optical amplifier having a single-mode curved active fibre

Applicant name
PIRELLI CAVI S.p.A.
Opponent name
Corning Incorporated
Board
3.4.02
Headnote
-
Relevant legal provisions
European Patent Convention Art 54 1973
European Patent Convention Art 56 1973
European Patent Convention Art 114(2) 1973
Keywords
Novelty and inventive step (confirmed)
Catchword
-
Cited decisions
G 0009/91
G 0010/91
T 1002/92
Citing decisions
-

I. European patent No. 0 442 553 was granted on the basis of European patent application No. 91 200 156.7.

Claim 1, the only independent claim as granted reads as follows:

"1. An optical amplifier insertable in series in an optical fiber telecommunication line for amplifying optical signals propagating in this fiber line, comprising at least a luminous pumping source (6) for generating optical radiation having a wavelength shorter than that of said optical signal, an active optical fiber (7) containing a fluorescent dopant in its optical core, being capable to emit light in the wavelength range of the optical signal when pumped at the wavelength of the pumping source, and a dichroic coupler (4) having two inputs connected to the optical fiber line and to the luminous pumping source respectively, and an output (5) connected to one end of said active fiber,

wherein

the active optical fiber (7) is a fiber that when arranged in a substantially rectilinear configuration permits single-mode propagation at the wavelength of the optical signal and multi-mode propagation at the pumping radiation wavelength and in that the active fiber is disposed in a curved configuration at least over 70% of its overall length, with a bending radius such that said fiber provides only single mode propagation of the fundamental mode at the pumping radiation wavelength."

II. The opposition filed against the patent was rejected by the opposition division. The opposition was founded on the grounds that the claimed subject-matter lacked novelty and inventive step in view in particular of the contents of the following documents:

D6: M. J. F. DIGONNET, SPIE Vol. 1171, Fiber Laser Sources and Amplifiers, 6-8 Sept. 1989, pages 8 to 26;

D9: L. B. JEUNHOMME, Single-Mode Fiber Optics, Marcel Dekker Inc., 1983, pages 8 to 26 and 87 to 94;

D13: S. SHIMIDA, Optics & Photonics News, Jan. 1990, pages 6 to 12; and

D14: WO-A-87/01246.

III. The appellant (opponent) filed an appeal against the decision. In support of his arguments he filed a series of further citations, quoted D16 to D19 and Annex 2 to Annex 5, amongst which

Annex 2: M. YAMADA et al., Er3+-Doped Fiber Amplifier Pumped by 0.98 µm Laser Diodes, IEEE Photonics Technology Letters, Vol. 1, No. 12, December 1989.

IV. Oral proceedings were held on 12 January 2000, at which the appellant requested that the appealed decision be set aside and that the patent be revoked.

The respondent (proprietor of the patent) for his part requested that the appeal be dismissed.

V. The appellant's arguments in support of his request can be summarised as follows.

The further citations filed only at the appeal stage, in particular document D19 and Annex 2, provided evidence that optical fiber amplifiers with a fiber permitting single-mode propagation at the wavelength of the optical signal and multi-mode propagation at the pumping radiation wavelength had actually been realised in practice at the priority date of the patent, and that they had not been contemplated only as a theoretical possibility, as had been alleged by the respondent in view of the rather abstract content of the document D6 used so far in the procedure. The newly filed Annexes 4 and 5 similarly showed that the general effect of bends in an optical fiber, consisting in attenuating propagation of higher order radiation modes, as was known per se from document D9, had also already been applied in practical constructions, to shift the effective cut-off wavelength of a fiber system down to a value below the system's operating wavelength. These documents therefore were highly relevant to the question of inventive step, and they should be admitted into the procedure, accordingly.

The claimed subject-matter lacked novelty in view of the construction disclosed in document D14 with reference to Figure 10. Figure 10 and the corresponding passage of the description did not explicitly describe the coiled arrangement of the amplifying fiber nor the claimed features directed to its transmission modes at both the pumping and signal wavelengths. These elements could however be easily derived from the other embodiments disclosed in the same document, relating to the use of the same amplifying fiber in laser arrangements.

The claimed subject-matter also lacked an inventive step in view of the closest prior art constituted by the device disclosed in Annex 2, from which it was distinguished only by its disposition into a curved configuration in such a way as to achieve single-mode propagation also at the pumping radiation wavelength.

This distinction could not however be considered inventive, since in particular it did not solve any technical problem other than achieving the obvious benefit of making the amplifier more compact. As was evidenced by the declarations by Dr Nolan and Dr Hempstead filed with the appellant's grounds of appeal, pump light that was solely in the fundamental mode when launched into a multi-fiber waveguide would not transfer any power to a higher mode, so that reducing the cut-off wavelength below the pumping wavelength would not provide any benefit to the efficiency of the amplifier. If multi-mode pumping light was introduced into the fiber, illuminating all but the fundamental mode would only result in a lower pumping efficiency. The higher efficiency shown by the examples of the opposed patent did not result from the claimed invention, but only from the use of a fiber of higher numerical aperture.

Document D6 which provided a review of theoretical models of fiber amplifiers, was the only document on the file to provide any support for the respondent's allegation of the occurrence, in prior art fiber amplifiers, of gain fluctuations induced by power exchange between the pump modes resulting from environmental changes, as was referred to in paragraph 3.4 of the document. From the declaration by Mr Digonnet, the author of document D6, joined to the statement of the grounds of appeal it was however clear that the above passage would not have been interpreted by the skilled person as meaning that such fluctuations normally occurred under real life conditions. Neither did the experimental conditions of the tests described in the declaration by Mr Vavassori and relied upon by the respondent, which tests involved repetitive deformation of a fiber coil, in any way replicate such real life conditions. Anyway, there was no mention in the patent in suit of an effect of the claimed arrangement on power stability. Such effect could not therefore be invoked in order to re-define the technical problem addressed by the invention.

Thus, the alleged invention only comprised the unrelated feature of the amplifier fiber being coiled up. This was a common means of achieving a compact arrangement of such optical fibre amplifiers, which used to comprise tens or hundreds of metres of fiber. Such coiling up would necessarily result in the claimed reduction of the cut-off wavelength, for the reasons explained for instance in document D9, and therefore also necessarily provide the technical effect relied upon by the respondent, if any.

VI. The respondent for his part submitted that the newly filed documents relied upon by the appellant did not in effect shed any new light on the prior art as already identified in the opposition procedure. Annex 2, in particular, was an article of which the manuscript was received by the editor on 11 August 1989, which was earlier than the effective date of document D6, in September 1989. Document D6, which so far had been considered to disclose the closest prior art, thus better reflected the latest developments in the field and the actual starting point of the invention at the priority date of the patent in suit than Annex 2.

Document D14 did not disclose any arrangement comprising all the features of present claim 1. Since it was not permissible for the proper interpretation of a document to arbitrarily combine selected features disclosed independently of each other in connection with the description of different devices, the document could not jeopardise novelty of the claimed subject-matter.

Concerning inventive step, the invention was distinguished from the arrangement recommended in document D6 in that it comprised a fiber having a nominal cut-off wavelength comprised between the pump wavelength and the signal wavelength, instead of the known amplifier fiber which was single-mode for both the pump radiation and the signal radiation. In addition, the fiber was bent in the specific manner set out also in the claim, so as to reduce the incidence of signal power fluctuations, the occurrence of which had been foreseen in document D6 and confirmed by the experimental set-up described in the declaration by Mr Vavassori as filed on 13 December 1999.

The prior art did not in anyway hint at bending optical fibers designed for multi-mode radiation propagation so as to achieve single mode propagation.

1. The appeal meets the requirements of Articles 106 to 108 and of Rule 64 EPC. It is admissible, accordingly.

2. Admissibility of late-filed documents into the procedure

Documents D16 to D19 and Annexes 2 to 5 as cited by the appellant in support of his argumentation against the patentability of the claimed subject-matter were filed in the appeal procedure only. They thus constitute evidence which goes beyond the "indication of facts, evidence and arguments" presented in the notice of opposition pursuant to Rule 55(c) EPC in support of the grounds of opposition. According to the case law of the Board's of appeal, based on the judicial character of the appeal procedure, which is "less investigative" that the administrative procedure in the first instance, as was emphasised in particular in the decision G 9/91 and the opinion G 10/91 of the Enlarged Board of Appeal (OJ EPO 1993, 408 and 420), such late-filed evidence should only very exceptionally be admitted into the appeal procedure in the appropriate exercise of the Board's discretion, if such new material is prima facie highly relevant in the sense that it can reasonably be expected to change the eventual result and is thus highly likely to prejudice maintenance of the European patent (see in particular T 1002/92 (OJ EPO 1995, 605).

In the present case, the Board having scrutinised all the late-filed documents reached the conclusion that Annex 2 discloses an arrangement which comes substantially closer to the claimed subject-matter than the prior art disclosed in document D6, which during the opposition procedure and in the decision under appeal had been considered to represent the closest prior art. As a matter of fact, for the reasons which will be indicated more in detail below, Annex 2 discloses a concrete embodiment of an optical fiber amplifier of a type permitting single mode propagation at the wavelength of the optical signal and multi-mode propagation at the pumping radiation wavelength, in accordance with one essential feature of claim 1. In contrast, document D6 only refers to such a possibility as a less favourable comparative example in a theoretical model calculation. For that reason, Annex 2 prima facie constitutes a highly relevant citation, which might seriously question the correctness of the reasoning in the appealed decision.

The other late-filed citations do not in the Board's opinion shed any substantially different light on the prior art as illustrated by the evidence already presented in the notice of opposition. In particular, the respondent did not deny that the general effect of bends on the propagation of radiation in an optical fiber, as referred to in Annexes 4 and 5, was known in the art, and illustrated also in document D9. These annexes are dedicated to the different technical problem of avoiding modal noise generated for instance at imperfect connections in single mode fiber systems, which is solved by providing an additional length of fiber bends in the radiation path. These annexes however do not relate to the operation of an optical fiber amplifier. They neither suggest to dispose an active fiber in a curved configuration over at least 70% of its overall length, nor to render mono-mode a fiber device actually designed for being multi-mode as set out further in present claim 1.

For the above reasons, the Board decided to admit Annex 2 in the appeal procedure, and to disregard the other citations not submitted in due time by the appellant, by virtue of Article 114(2) EPC.

3. Novelty

3.1. Document D14, which is the sole citation relied upon by the appellant in support of his attack against the novelty of the claimed subject-matter, discloses both optical fiber lasers and optical amplifiers. The only embodiment of an amplifier is described with reference to Figure 10 (see page 15, line 9 to page 16, line 7). This passage neither states the pump and signal radiation wavelengths, nor the cut-off wavelength of the fiber, above which only mono-mode propagation is permitted. The appellant in this respect referred to indications given in the same document in conjunction with other arrangements, using an active fiber as a laser rather than as an amplifier. The document in the Board's view however lacks any explicit or implicit teaching that specific features disclosed in relation with optical fiber lasers also applied to the optical fiber amplifier of Figure 10. Quite on the contrary it is noticed that the passage directed to the amplifier of Figure 10 refers to an erbium-doped fiber (see the sentence bridging pages 15 and 16), whilst the laser fiber said to exhibit a cut-off wavelength of 1 µm is specified to be of the neodymium-doped typed (see page 8, lines 3 to 11) which shows that different fibers are used for the respective embodiments. Document D14 also fails to disclose that coiling up of the amplifier fiber, if any, should be performed in such a way as to meet the conditions set out at the end of present claim 1 in respect of the pump mode propagation, and at least over 70% of the overall length of the fiber.

3.2. Annex 2 discloses an optical amplifier insertable in series in an optical fiber telecommunication line for amplifying optical signals propagating in this fiber line, comprising at least a luminous pumping source for generating optical radiation having a wavelength shorter than that of said optical signal (0.98 µm as compared to between 1.49 and 1.58 µm), an active optical fiber containing a fluorescent dopant (erbium) in its optical core being capable to emit light in the wavelength range of the optical signal when pumped at the wavelength of the pumping source, and a dichroic coupler having two inputs connected to the optical fiber line and to the luminous pumping source respectively, and an output connected to one end of said active fiber, wherein (since the cut-off wavelength is of 1.1 µm) the active optical fiber is a fiber that when arranged in a substantially rectilinear configuration permits single-mode propagation at the wavelength of the optical signal and multi-mode propagation at the pumping radiation wavelength (see page 422, "Experimental Procedures").

The document does not refer to any bending of the fiber. Accordingly, the subject-matter of claim 1 of the patent in suit is distinguished from the optical amplifier disclosed in Annex 2 in that the active fiber is disposed in a curved configuration at least over 70% of its overall length, with a bending radius such that said fiber provides only single mode propagation of the fundamental mode at the pumping radiation wavelength.

3.3. The remaining documents on the file do not come closer to the claimed subject-matter.

In particular the set of parameters given in the third paragraph of page 15 of document D6 for use in the mathematical models presented there actually anticipates the same features of claim 1 as the fiber of Annex 2, and the document does not refer to any bending of the fiber either.

3.4. For these reasons, the subject-matter of claim 1 of the patent in suit is novel within the meaning of Article 54 EPC.

4. Inventive step

4.1. The closest prior art in the Board's opinion is constituted by the optical fiber amplifier disclosed in Annex 2. This document was published in December 1989 shortly before the priority date of the patent in suit, which is 12 February 1990. It discloses a concrete example of a fiber amplifier with a fiber designed for multi-mode propagation at the wavelength of the pumping radiation, and it does not hint at any particular difficulty which would deter the skilled person from contemplating further development of the described device.

On the contrary, document D6 reviews theoretical models of fiber amplifiers. Although it uses as an example a set of parameters corresponding to a fiber which is for multi-mode propagation at the pumping radiation (see page 15, third paragraph), it also states that:

"If the fiber is multimoded at the pump wavelength, power exchange between the pump modes resulting from environmental changes will induce sizeable gain fluctuations. Inasmuch as possible, it is therefore preferable, as in four-level material fiber devices, to design the fiber such that it carries a single pump mode" (see page 16, point 3.4, second paragraph).

For these reasons, document D6 in the Board's opinion constitutes a less appropriate starting point for getting to the claimed amplifier, which - against the explicit warning in D6 - actually comprises an active fiber which is multi-moded at the pumping wavelength.

The Board cannot endorse the respondent's line argument to the effect that document D6, published in September 1989, illustrates a later stage of development of the art than Annex 2, the manuscript of which was received by the editor on 11 August 1989, as indicated at the bottom of the left-hand column on page 422 of the annex. In addition to the fact that there is no evidence that the manuscript of Annex 2 was not substantially amended before its actual publication, the contents of document D6, published from 6 to 8. September 1989 also had to be conceived by its author some time before this date. In any case, both documents are timely so close to each other that they must be considered as illustrating technical and theoretical developments which resulted from substantially parallel research efforts.

4.2. The optical amplifier set out in claim 1 of the patent in suit is distinguished from the closest prior art amplifier as disclosed in Annex 2 in that the active fiber is disposed in a curved configuration at least over 70% of its overall length, with a bending radius such that said fiber provides only single mode propagation of the fundamental mode at the pumping radiation wavelength.

The respondent in this respect submitted that the claimed fiber configuration allowed to reduce output signal power fluctuations in practical use of the optical amplifier, which was denied by the appellant.

The Board agrees that the description of the patent does not refer to any reduction of the output signal power fluctuations as a result of the claimed arrangement, but that it stresses instead the achieving of a greater efficiency (see the results of the comparative example from page 6, line 21 to page 7, line 35). The whole description however starts from a prior art constituted by an optical fiber amplifier in which the active fiber is of the single-mode type both at the signal wavelength and at the pumping wavelength (see page 2, lines 17 to 32 and the comparative example at the top of page 7). Since substantially closer prior art as disclosed in Annex 2 was brought to light by the appellant, the Board sees no objection to the respondent now founding its argumentation in favour of inventive step on a technical effect objectively derived from a direct comparison with this closest prior art, and also related to the general issue of the quality of signal amplification, namely the improving of output signal stability.

The Board is also satisfied that the claimed features actually achieve an improvement of the output signal stability, despite the appellant's denying that any noticeable gain variation would occur during normal use of the closest prior art arrangement.

Document D6 indeed explicitly refers to power exchange between the fundamental and higher pump modes inducing sizeable gain fluctuations as a result of environmental changes. The Board in this respect agrees to the statement made by Mr Digonnet, the author of document D6 in the declaration filed with the appellant's statement of the grounds of appeal, to the effect that the passage on page 16 of the document did not suggest that all and environmental effects would cause such a power coupling, nor that gain fluctuations would necessarily take place. The passage nevertheless clearly indicates that gain fluctuations can actually result from sufficiently large environmental changes, e.g. large variations in temperature or applied mechanical stress. This is confirmed by the experiment described in the declaration by Mr Varassori as filed by the respondent. The Board agrees to the appellant's contention that the magnitude of the perturbation brought to the experimental arrangement, consisting in continuously varying the diameter of a turn of the active fiber, does not correctly reflect the much lower mechanical stresses imposed on an optical amplifier in normal use. Smaller perturbations can however reasonably be expected to still produce some gain fluctuation, even at a much lesser degree. In addition, optical amplifiers can certainly be used also under substantially higher-than-normal temperature or stress conditions.

The declarations by Dr Nolan and Dr Hempstead as filed with the appellant's grounds of appeal do not address the question of the stability of the output signal power.

Thus, the technical problem underlying the claimed arrangement as objectively determined from a comparison with the closest prior art is to improve the optical fiber amplifier of Annex 2 in such a way as to reduce the incidence of environmental changes on its gain stability.

4.3. The sensitivity to environmental perturbations of optical fiber amplifiers of the type disclosed in Annex 2 was known already from document D6 (see page 16, the second paragraph of point 3.4). The recognition of the technical problem does not per se contribute to inventive step, accordingly.

Thus it remains to be considered whether the claimed solution consisting in disposing the active fiber in a curved configuration at least over 70% of its overall length with a bending radius such that said fiber provides only single mode propagation of the fundamental mode at the pumping wavelength was obvious to the skilled person at the priority date of the patent.

Document D6 is the sole prior art citation on the file to address the same technical problem as the patent in suit. It explicitly recommends "to design the fiber such that it carries a single pump mode" (see page 16, the second paragraph of point 3.4). When applied to the erbium-doped fiber amplifier pumped by 0.98 µm laser diodes of Annex 2, this teaching would either call for re-designing the fiber so that it exhibits a cut-off wavelength of 0.98 µm or less instead of its effective cut-off wavelength of 1.1 µm, or for selecting a different pumping means operating at a higher wavelength. The latter option is mentioned explicitly in the same passage of document D6, according to which, for erbium-doped silica fibers the result of the analysis provides an incentive for a pump near 1.49 µm. Document D6 therefore in effect teaches away from the claimed arrangement, which in contrast achieves a reduction of the effective cut-off wavelength by the effect of bending the fiber.

Document D9 is an excerpt from a book on the principles and applications of single mode fiber optics (see the Title), which in Chapter 3.3 reviews the various waveguide attenuation mechanisms, in particular the bending losses affecting the only, fundamental mode as it propagates in a bent single-mode fiber. This document does not therefore actually relate to the situation prevailing in the closest prior art arrangement of Annex 2, in which it is the higher order modes which shall be removed from a fiber actually designed for multi-mode propagation, whilst the fundamental mode pumping and signal radiations should clearly not be affected by the bending losses referred to in document D9.

The other documents on the file, except for Annexes 4 and 5 which have not been considered more relevant than document D9 for the reasons set out in point 2 supra, and have not been admitted into the procedure, accordingly, do not establish any relationship between the bending of optical fibers and the propagation therein of higher radiation modes.

The appellant expressed his concern that the present patent could unduly cover optical fiber amplifiers comprising an active fiber coiled merely for the totally unrelated and common purpose of reducing the overall size requirement of the amplifier. He however failed to produce any evidence that the degree of coiling which the skilled person would normally impose on an available active fiber of the type permitting single mode propagation at the wavelength of the optical signal and multi-mode propagation at the pumping radiation wavelength, like the one disclosed in Annex 2, in order to fit it into a compact housing of the type shown for instance in Figure 6 of document D13 (size: 50 x 130 x 110 mm) would automatically result in the claimed reduction of the fiber's cut-off wavelength to a value equal to or less than the wavelength of the pumping radiation.

For these reasons, the optical fiber amplifier defined in claim 1 of the patent in suit cannot on the face of the elements on the file be considered to result in an obvious manner from the state of the art. It involves an inventive step within the meaning of Article 56, accordingly.

4.4. The same conclusion applies to the subject-matter of dependent claims 2 to 8, by virtue of their appendance to claim 1.

5. Thus, the grounds for opposition raised by the appellant do not prejudice the maintenance of the patent unamended, and the decision to reject the opposition as taken by the opposition division under Article 102(2) EPC can be upheld.

Order

ORDER

For these reasons it is decided that:

The appeal is dismissed.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility