Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventor Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • The PATLIB Knowledge Transfer to Africa initiative (KT2A)
          • KT2A core activities
          • Success story: Malawi University of Science and Technology and PATLIB Birmingham
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Innovation against cancer
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0911/98 (Air conditioner/NIPPONDENSO) 09-04-2003
Facebook X Linkedin Email

T 0911/98 (Air conditioner/NIPPONDENSO) 09-04-2003

European Case Law Identifier
ECLI:EP:BA:2003:T091198.20030409
Date of decision
09 April 2003
Case number
T 0911/98
Petition for review of
-
Application number
85307532.3
IPC class
B60H 1/00
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 753.85 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Air conditioner for automobiles

Applicant name
NIPPONDENSO CO., LTD.
Opponent name

Robert Bosch GmbH

Rodacher Autoklima GmbH

Behr GmbH & Co.

Board
3.5.01
Headnote
-
Relevant legal provisions
European Patent Convention Art 56 1973
European Patent Convention Art 100(a) 1973
European Patent Convention R 57a 1973
Keywords

Inventive step (no)

Late filing of claims (yes)

Amendments occasioned by grounds of opposition (no)

Catchword
-
Cited decisions
T 0623/97
T 0527/92
T 0227/95
Citing decisions
T 1132/20

I. European patent number 0 179 625, granted with effect of 7. March 1990, claims priority from patent applications filed in the years 1984 and 1985.

II. On 26 November 1990 and 3 and 6 December 1990, the whole of the patent was opposed in separate oppositions by respective opponents O1, O2 and O3. One of the grounds for opposition raised was Article 100(a) EPC, lack of inventive step, inter alia with regard to following prior art documents:

D1: P-A-0 021 353 (NIPPONDENSO CO.), 1981

D12: L. T. Fan et al.: "Applications of Modern Optimal Control Theory to Environmental Control of Confined Spaces and Life Support Systems, Part-5 Optimality and Sensitivity Analysis", Build. Sci., vol. 5, 1970, Pergamon Press (GB), pp. 149- 152

D14: Armin Schöne: "Prozessrechensysteme", 1981, Carl Hanser Verlag (DE), pp. 362-364

III. In two successive appeals, T 527/92 and T 227/95 decisions given by the opposition division in favour of the patent proprietor had been reversed by the Board (sitting, however, in different compositions). In a subsequent interlocutory decision by the opposition division posted on 24 July 1998 the patent was found to meet the requirements of the Convention. The decision was based on an amended claim 1 filed with a letter dated 12 May 1998, the claim reading as follows:

"1. An air conditioner for automobiles comprising: blow off air control means (M2) for controlling at least temperature and flow rate of blow off air discharged into a vehicle compartment (M1); internal air temperature detecting means (M3) for detecting the temperature within said vehicle compartment; and air conditioning control means (M4) for feedback controlling said blow off air control means so that said detected internal air temperature (TR) equals a setting target temperature (TR*),

characterized in that,

said air conditioning control means (M4) is formed as an integral-added optimal regulator, said optimal regulator comprising:

- a perturbation component computing portion (P3) for computing a perturbation component of a parameter of an air conditioning system including said vehicle compartment, the computed perturbation component being derived from a measured value (TR) and from a reference parameter value (TRa) which occurs under a state where steady air conditioning is being performed;

- a state observer (P4) for estimating state variables (DeltaTB, DeltaTC, DeltaTD) on the basis of the perturbation component (DeltaTR) computed by the perturbation component computing portion (P3) and perturbation components (DeltaVB, DeltaVC, DeltaVD) calculated by a feedback amount determining portion (P5), said estimated state variables indicating a dynamic internal state of the air conditioning system including said vehicle compartment;

- wherein said feedback amount determining means (P5) determines a feedback control amount of said control means (M4) on the basis of said estimated state variables (DeltaTB, DeltaTC, DeltaTD) and an optimal feedback gain (F) which is predetermined according to dynamic models of said air conditioning system;

- and wherein variables (VB, VC, VD) of blow off air controlled by said blow off air control means (M2) include at least the amount of air flow (VB) from a blower motor (3) which sends said blow off air, cooling capability (VC) for cooling air sent by said blower motor (3), and a controlled variable (VD) of an actuator (24) which causes the temperature of the blow off air to raise by reheating said sent air, and wherein for each variable (VB, VC, VD) a corresponding state variable (DeltaTB, DeltaTC, DeltaTD) is estimated by said state observer (P4)."

IV. The decision was again appealed by opponent O2, with the filing of the notice of appeal and the payment of the appeal fees executed on 15 September 1998 and the filing of the statement of grounds on 6 November 1998.

V. This present, third, appeal resulted in oral proceedings on 9 April 2003, at the end of which the Chairman announced the Board's decision on the basis of claim 1 of 12 May 1998, the main request, and the following claims of first and second auxiliary requests filed during the appeal proceedings:

Claim 1 filed with a letter dated 24 September 2001, amending claim 1 of 12 May 1998 by inserting the words "by means of controlling an air blower motor (3), an evaporator (5) and an actuator (24) for an air mixing damper (9);" into the first paragraph of claim 1 after the words "into a vehicle compartment (M1)" and by replacing, in the last paragraph of the claim, the words "a blower motor" by "the blower motor" and the words "an actuator" by "the actuator".

Claim 1 filed in the oral proceedings of 9 April 2003 adding, to claim 1 of 12 May 1998, the words "which dynamic models are determined in advance through system identification and through experimental analysis of the system," directly at the end of the penultimate paragraph of the claim after the words "according to dynamic models of said air conditioning system", and removing the word "and" at the start of the last paragraph.

VI. In the decision presently under appeal the opposition division took the view that the claimed air conditioner solved the problems of poor transient response and high fuel costs existing with conventional systems. The control conditions and the control variables used in the integral-added optimal regulator according to claim 1 distinguished the claimed air conditioner in an inventive manner over the prior art.

VII. The appellant argued that the same measuring and control variables were used in the prior art of document D1 as in the alleged invention, namely drive signals VB, VC, and VD and measured values for the internal air temperature. The state variables defined in claim 1 did not contribute to inventive step since such definitions followed automatically from applying so-called "modern control theories" which had been known long before the priority date of the patent and were well documented as common general knowledge in documents D12 and D14.

The use of state-space models and integral added optimal regulators was, at the priority date of the contested patent, known to the skilled person. A state- space control system with observer was shown, for example, in document D14, page 362, Figure 7.25. Applying the state-space method to the prior art system of document D1 meant using DeltaTB, DeltaTC, and DeltaTD as the state space variables, computed on the basis of perturbation components DeltaTR, DeltaVB, DeltaVC, and DeltaVD.

The claimed system did not bring any other advantage or effect than to keep internal air temperature TR at a setting target temperature TR*, which was the normal aim of automotive air conditioning.

The alleged invention, therefore, was a mere alternative to conventional control systems for automotive air conditioning. The contested patent did not disclose anything which might considered to involve an inventive step.

VIII. The appellant (opponent O2) requested that the decision under appeal be set aside and the European patent no. 0179625 be revoked.

The respondent (patent proprietor) requested that the appeal be dismissed or as auxiliary requests that the decision under appeal be set aside and that the patent be maintained on the basis of claim 1 of the first auxiliary request submitted on 24 September 2001 or claim 1 of the second auxiliary request submitted at oral proceedings on 9 April 2003.

IX. The respondent agreed that the prior art of document D1 came closest to what was claimed. This document disclosed an automotive air conditioning system which allowed the control of the air temperature in a predetermined pattern with the control of the air mixer damper and blower motor and disclosed, in combination, the features of the first part of claim 1 in the version of the first auxiliary request. The results to be achieved with such a system, however, were very sensitive to the design of the control system.

Compared with the prior art of document D1 the invention improved the time response, as clearly illustrated by the dashed line in Figure 8 of the European patent specification, and reduced the power consumption of the system. Excellent results were achieved by the selection of specific system parameters and the application of modern control theories on the basis of a digital state-space approach and the use of an integral-added optimal regulator.

The invention provided, in comparison to the prior art of document D1, a dynamic model of an automotive air conditioning system requiring a specific design of the control system, the identification of an appropriate set of measuring and control variables and the design of an optimal feedback gain. By implementing such a dynamic control model the invention achieved, in a surprisingly successful manner, a double aim, namely improving the time response and at the same time reducing the power consumption. These problems had not been satisfactorily solved in the prior art systems.

Document D14 was an extract from a textbook which explained digital control using a state observer in abstract and general terms. Document D12 outlined, again only in general terms, environmental control of confined spaces and life support systems without mentioning that it could be applied to automotive air conditioning. It was undisputed, and indeed acknowledged in the patent specification, that integral- added optimal regulators and state-space techniques in themselves formed part of the prior art.

The appellant had not succeeded in establishing any clear link between such modern control concepts and their use in an automotive air conditioning system. The invention was moreover the first use of modern control techniques in the automotive sector.

1. The appeal complies with the requirements of Articles 106 to 108 and Rules 1(1) and 64 EPC and is thus admissible.

The appeal is also allowable since the interlocutory decision under appeal, deciding that the amended patent meets the requirements of the EPC, cannot stand in respect of the requirement for an inventive step (Articles 56, 100(a) and 102(3) EPC) and must thus be set aside.

Moreover, the patent must be revoked, as requested by the appellant, since none of the requests submitted by the respondent is allowable.

Main request

2. It follows from the legal definition of Article 56 that an invention is considered to lack an inventive step if having regard to the prior art it is obvious to a person skilled in the art. This obviousness criterion is generally applied by starting from an appropriate point in the prior art (the "closest prior art") and analyzing the invention on the basis of the so-called problem-and-solution approach (see Case Law of the Boards of Appeal of the European Patent office, 4th edition, 2002, pages 101 and 102).

Prior art document D1 is in the field of automotive air conditioning systems and clearly relevant to the invention to which claim 1 relates. It discloses an air conditioner for automobiles (see Figure 1 with the accompanying parts of the text) comprising blow off air control means (elements 18 to 21), internal air temperature detecting means ("in-car sensor" 10), and air conditioning control means (elements 11 to 17) controlling said blow off air control means so that said detected internal air temperature equals a setting target temperature (see "temperature setting means" 13 and page 6, lines 1 to 6 and 24 to 27) . In the embodiment described in document D1 on page 17, lines 9 and 10, the variables of blow off air controlled by said blow off air control means include at least the amount of air flow (see also page 5, lines 12 to 17 "rate of air flow") from a blower motor ("blower motor" 3), cooling capability for cooling air sent by said blower motor (loc. cit.), and an actuator ("position adjusting actuator" 19) which causes the temperature of the blow off air to rise by reheating ("air mixing damper" 6 in cooperation with "heater core" 5). The air conditioning control means ("microcomputer" 16) determines a feedback control amount of the air conditioning control means (see page 8, line 27 to page 9, line 12).

3. The claimed air conditioner is distinguished from this prior art in that the air conditioning control means "is formed as an integral-added optimal regulator" comprising a perturbation component computing portion P3 for computing a perturbation component DeltaTR derived from the measured internal air temperature TR and from a reference parameter value TRa;

a state observer P4 for estimating state variables DeltaTB, DeltaTC, DeltaTD; and

feedback amount determining means P5 for determining the feedback control amount, providing an optimal feedback gain F which is predetermined according to dynamic models of said air conditioning system.

In other words, the invention as set forth in claim 1 of the main request differs from the disclosure of document D1 in that it provides

(a) a general state-space approach to the control system design,

the design including

(b) a "state observer" for estimating the state variables, and

(c) a regulator which is

(d) "optimal", i.e. the system provides for an optimal feedback gain, and

(e) "integral-added", i.e. the control loop includes an integrating function.

The state-space approach is substantially a control algorithm for calculating, in the present context, the feedback signals for driving the respective actuators of the automotive air conditioner from the measured internal temperature TR. Except for the definition of the measuring and controlling variables TR, VB, VC, and VD, claim 1 defines the control system only in terms of the abstract components and parameters of the state- space model, with the consequence that the invention as claimed does not manifest itself in any concrete physical properties of the control system. If for example the control features necessary for implementing the control algorithm (not present in claim 1) are chosen inappropriately as a result of an inadequate system analysis or of an inappropriate definition of the optimization problem, the time-response and the power consumption of the air conditioner will turn out to be worse than the results achieved with a simple on- off control or the control system of document D1, regardless of the measuring and controlling variables used in the state-space model and the potentially advantageous effects achievable by features (b) to (e) cited above.

Thus, the mere use of the state-space approach does not in itself provide any advantage over the D1 system. Accordingly, in the context of the problem-and-solution approach for assessing inventive step, the technical problem to be solved is seen as providing an alternative to the control algorithm used in the air conditioning system of document D1.

4. In seeking such an alternative control algorithm the skilled person could be expected to take prior art document D12 into account since this document deals with matters relating to air conditioning and temperature control systems in confined spaces. The circumstance that the confined spaces are part of life support systems is not relevant since the technical issues in respect to air conditioning and temperature control are largely the same as in an automotive system.

It is apparent from document D12, in particular page 151, last paragraph, that "the modern optimal control theory is very much suited for such systems", the skilled person thus being taught that these control methods are a very suitable alternative to known control schemes, and thus as a possible solution of the technical problem defined above.

5. Regarding the expression "modern control theory", it was not contested by the respondent that well before the priority date of the contested patent, it had a known meaning in the art, being synonymous with the use of a state-space digital control method, which is based on a linearised mathematical model of the control system. Having decided in favour of the "modern optimal control theory" suggested by document D12 as an appropriate alternative to the prior art system of document D1, the skilled person, therefore, could be expected to realise an automotive air conditioning and temperature control system of the type comprising features (a), (c) and (d) cited above.

6. Nevertheless, various technical problems remain to be solved since document D12 contains no relevant details concerning the theory or the design of such modern optimal control systems, although "many facets to the modern control theory" are said to exist (see document D12, page 151, penultimate paragraph). The skilled person, however, can be expected to apply his common technical knowledge in this field, which is, to a considerable extent, acknowledged in the present patent specification itself (see page 4, lines 17 ff. and following pages).

7. In the first place, a mathematical model of the automotive air conditioning and temperature control system has to be formulated. For such a complex system normal practice requires that this model be determined through system identification and experimental system analysis.

8. Secondly, the complex environmental conditions inside and outside of automobiles generally do not allow the measurement of all relevant model parameters of the automotive air conditioning and temperature control system. In the prior art system of document D1 for example, the temperature is measured only at a few locations. The normal practice to deal with the problem of incomplete information regarding the model parameters is the use of so-called "observers" as described in the present patent specification, page 5, lines 9 ff. and also shown as "Regelgrößen-be-obachter" in the prior art document D14, page 362, Figure 7.25. A state observer according to feature (b) above thus does not contribute to inventive step, at least if considered in isolation.

9. A third problem to be solved is the residual errors which are commonly known to exist in closed-loop controllers under steady process conditions. Adding an integrator to the control loop is a standard technique to solve this problem, which is also applied in modern control methods as acknowledged for example in the present patent specification at page 4, lines 17 ff. Therefore, at least if considered in isolation, the integral-added regulator defined in the last feature (e) does not involve an inventive step either.

10. Finally, features (a) to (e) remain obvious even if their contribution to the prior art is considered as a whole and possible combinatorial effects are taken into account.

The technical contribution to the prior art indicated by feature (a) resides in the general decision for using a modern state-space control method as an alternative to the document D1 system. This decision is the first step which has to be taken and which is, under technical aspects, independent from possible subsequent embodiments of the general state-space model, which the embodiments according to features (b) to (e) above actually are.

Taking feature (e) first, it is clear that steady-state errors and the use of an integrator to reduce them are not specific to any particular control method. They are also relevant in the classical regime of control techniques. Using feature (e) in the context of an optimal state-space model with observers does not add any technically relevant aspects so that even in combination with such other claim features the integrating function remains a technically independent aspect of the invention and thus is an obvious addendum to the state-space model defined in claim 1.

Regarding feature (b), the situation is slightly different since the model building of the state-space approach (feature (a)) may be understood as a prerequisite of implementing the state observer defined in feature (b). However, as explained in T 623/97 ((not pub. in OJ EPO), point 4.4 of the reasons, an invention even requiring two or more steps for arriving at a complete solution may be obvious to the skilled person if the technical problem to be solved leads the skilled person step-by-step to the solution, each individual step being obvious in the light of what has been accomplished and of the residual task remaining to be solved.

In the present case indeed, the information gap present in document D12 forces the skilled person, after having decided in favour of a modern optimal control system, to make further steps to arrive at a workable design. Choosing to solve first the one or the other from the many design problems evidently present and solving this in an obvious manner does not involve an inventive step.

11. In conclusion, the subject-matter of claim 1, even if considered as a whole, lacks inventive step , which prejudices maintenance of the patent amended on the basis of respondent's main request (Articles 52(1), 56 and 102(3) EPC).

First auxiliary request

12. The first auxiliary request amends claim 1 of the main request by introducing features from the second part into the first part of the claim, without adding any technical information to the claim. As follows from respondent's letter of 24 September 2002 these amendments merely serve the purpose of bringing the claim wording into compliance with the requirements of Rule 29(1)(a) EPC. The amendments are thus not occasioned by any grounds of opposition, with the consequence that they are not admissible into the appeal proceedings, and the first auxiliary request thus not being allowable (see Rule 57a EPC and chapter VII.C.10.1.1 in Case Law of the Boards of Appeal of the European Patent Office, 4th edition 2001, pages 483 f.).

Second auxiliary request

13. Claim 1 of the second auxiliary request was filed at the oral proceedings held before the Board, which was thus obliged to decide whether to exercise its discretion whether to admit it to the proceedings (see chapter VII.C.14 in Case Law of the Boards of Appeal of the European Patent Office, 4th edition 2001, pages 545 ff.).

The amended claim only adds to claim 1 of the main request an explanation of the term "dynamic model" appearing in the penultimate paragraph of claim 1 of 12. May 1998. This explanation, however, is of a very general character and indicates only what was already normal practice in applying a state-space model to complex systems. These amendments do not prima facie render the subject-matter of claim 1 patentable. In addition, the amendments were not occasioned by any new evidence or arguments which were produced at this stage of the appeal proceedings. Neither has the respondent given any other acceptable reason for the late filing. The Board, therefore, decided not to admit the amended claim to the proceedings.

Order

ORDER

For these reasons it is decided that:

1. The decision under appeal is set aside.

2. The patent is revoked.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility