Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventor Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • The PATLIB Knowledge Transfer to Africa initiative (KT2A)
          • KT2A core activities
          • Success story: Malawi University of Science and Technology and PATLIB Birmingham
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Innovation against cancer
      • Innovation actors
        • Go back
        • Overview
        • Research universities and public research organisations
        • Startups and SMEs
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0814/08 (Ceramic-metal composite/ALCAN INT LTD) 16-09-2010
Facebook X Linkedin Email

T 0814/08 (Ceramic-metal composite/ALCAN INT LTD) 16-09-2010

European Case Law Identifier
ECLI:EP:BA:2010:T081408.20100916
Date of decision
16 September 2010
Case number
T 0814/08
Petition for review of
-
Application number
02766076.0
IPC class
C04B 41/88
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 89.6 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Boron containing ceramic-aluminum metal composite and method to form the composite

Applicant name
DOW GLOBAL TECHNOLOGIES INC.
Opponent name
ALCAN INTERNATIONAL LIMITED
Board
3.3.05
Headnote
-
Relevant legal provisions
European Patent Convention Art 54
European Patent Convention Art 56
European Patent Convention Art 123(3)
Keywords

Novelty (main request): yes

Inventive step (main request) - evidence for the effect (yes) - effect indicated in prior art - obvious solution

Auxiliary request (allowable) - method claims (not opposed) - board bound by opponent's statement under Rule 55(c) EPC

Catchword
-
Cited decisions
G 0009/91
T 0077/87
T 1437/07
Citing decisions
-

I. European patent EP-B-1 425 254 was granted with 21 claims. Independent claims 1, 11 and 18 read as follows:

"1. A method of forming a boron containing ceramic-aluminum metal composite comprising,

(a) mixing a boron containing ceramic with a metal powder comprised of aluminum or an aluminum alloy, where the boron containing ceramic is reactive with aluminum above the melting temperature of aluminum,

(b) shaping the mix of step (a) into a porous preform,

(c) contacting the porous preform with an infiltrating metal comprised of aluminum or aluminum alloy having a lower melting temperature than the metal powder, and

(d) heating the porous preform and infiltrating metal to an infiltrating temperature sufficient to melt the infiltrating metal but insufficient to melt the metal powder, such that the infiltrating metal infiltrates the porous preform and forms a substantially dense boron containing ceramic-aluminum metal composite."

"11. A boron containing ceramic-aluminum metal composite having a density of at least 95 percent of theoretical density and being comprised of at least 60 percent by volume aluminum metal or alloy thereof, with the boron containing ceramic and at least one reaction product of the boron containing ceramic and aluminum dispersed within the aluminum metal or alloy thereof."

"18. A vehicular part comprised of the composite of Claim 11."

II. The opposition filed against the European patent was based on the grounds of opposition under Article 100(a) EPC and was specifically directed against granted claims 11 to 19 (i.e. the product claims) only.

III. The opposition division maintained the European patent on the basis of amended claims 1 to 19 filed as a main request with letter dated 3 September 2007.

IV. The documents cited in opposition proceedings included the following:

D4: US-A-5 957 251

D5: J.P. Lucas et al., J. Materials Sci. Eng. A131, 221 to 230, (1991)

D6: US-A-4 786 467

D9: Metals Handbook Vol. 15, pages 538 to 544 (1988)

D10: Affidavit and three exhibits by Dr X Grant Chen

D12: Further affidavit and exhibit XGC4 by Dr X Grant Chen

D13: ASM Handbook, Vol. 9, "Metallography and Microstructures", ASM International, Ohio, US, pages 404 to 410, 425 to 429

V. The opposition division dismissed the opponent's novelty objection based on document D5. Claim 11 required that the amount of boron-containing ceramic in the composite was at least 50 vol.-% of the total amount of boron-containing ceramic and reaction product present in the composite. D5 did not clearly and unambiguously disclose that feature.

Claim 11 was also found to involve an inventive step over D1 or D4 because there was no suggestion to provide composites as defined in claim 11 having an Al content of at least 60 vol.-% in combination with high density and limited interface reaction.

VI. Claim 11 in the form maintained by the opposition division reads as follows:

"11. A boron containing ceramic-aluminum metal composite having a density of at least 95 percent of theoretical density and being comprised of at least 60 percent by volume aluminum metal or alloy thereof, with the boron containing ceramic and at least one reaction product of the boron containing ceramic and aluminum dispersed within the aluminum metal or alloy thereof, wherein the amount of boron containing ceramic is at least 50 percent by volume of the total amount of boron containing ceramic and reaction product present in the composite."

(Amendments to claim 11 as granted in bold).

VII. The appeal was filed by the opponent by a letter dated 16 April 2008. The statement of grounds of appeal was filed under cover of letter dated 7 July 2008. It was accompanied by the new document

D14: US-A-5 700 962.

Further submissions were made in a letter dated 16 August 2010, including

D15: Affidavit of Mr Andris Bruno Innus, dated 13 August 2010,

and four references cited therein.

VIII. The patentee's (respondent's) observations were received with letter dated 7 November 2008.

IX. Oral proceedings were held on 16 September 2010. The respondent filed, as an auxiliary request, an amended set of claims consisting of claims 1 to 12 (based on claims 1 to 10, 20 and 21 as granted).

X. The arguments of the appellant may be summarised as follows:

Novelty

The method described in D5 as "stir casting" and used for producing the composite samples analysed as proprietary had not necessarily been the same in 2001. Dr Chen asserted in his affidavit that the casting technique used in D5 was known as the "Duralcan process". Said process was described in D6, published in 1988. Therefore, in 2001 a person skilled in the art reading D5 and faced with a "stir casting" technique that was described in 1991 as proprietary would have had no difficulty in selecting the Duralcan process and thus would have had all the information needed to reproduce the teaching of D5. The appellant referred in this context to decision T 77/87.

Dr Chen declared in his first affidavit that densification by hot pressing, disclosed in D5, was known to reduce the porosity to between 1% and 2%.

The calculations made by Dr Chen in his second affidavit on the micrograph of Figure 2a of the Lucas paper (D5) resulted in a B4C content of 56%. Dr Chen asserted that from his expertise he could not tell whether the illustrated composites (of D5) were made by stir casting or according to the opposed patent.

Therefore, the product of claim 11 lacked novelty over D5.

Inventive step

In view of paragraphs [0006] and [0010] of the patent, the problem underlying the opposed patent was that of improved bonding for the type of composite to which the opposed patent related.

This problem was clearly solved only by producing the composite using the patentee's claimed method, the improved bonding being ascribed to a limited interface reaction. However, as shown by example 3 (now outside the scope of the claims) and the other examples, the patentee could not assert that all composites falling within the scope of current claim 11 inherently possessed superior bonding and hence superior mechanical properties to composites falling outside said scope, or indeed composites prepared according to prior-art methods.

D1 admittedly discussed ceramic contents of at least 50%. However, D1 also taught use of higher metal contents to achieve higher theoretical densities, the reason for a high ceramic content being only to maximise the composite's hardness.

Similarly, D4 clearly taught the desirability of dense boron carbide-aluminium composites, made by the infiltration technique according to D2, in particular for vehicular parts. Said ceramic-metal composites also contained reaction products. It was noteworthy that the same Al alloy "6061" as in the opposed patent was used.

For these reasons, it would have been obvious to produce composites falling under the scope of claim 11 using known techniques other than the one disclosed in the opposed patent.

Document D14 described boron-containing metal matrix composites of the claimed type and their use as neutron shields. The composites were prepared by a combined high pressure pressing and sintering method achieving up to 99% of theoretical density. The intermetallic bonding between the boron carbide and the Al metal matrix described in D14 corresponded to the "interface reaction" of the opposed patent. By choosing the same Al alloy "60612" as the opposed patent, the boron containing ceramic Al composites exhibited improved bonding and mechanical properties. The exact amount of boron containing ceramic, compared with the total amount of boron-containing ceramic and reaction product in the composite was however presently not known.

XI. The arguments of the respondent may be summarised as follows:

D14 should not be admitted: It was not sufficiently relevant because it did not disclose essential features of claim 11. It was unclear how much Al reacted with the B4C and how much Al remained in the composite. There was also no suggestion as to how to obtain a composite having a density of at least 95% of theoretical density by a dry-blending and pressing process.

Novelty

Regarding D5, the respondent argued that this document was not enabling with respect to the composites disclosed therein. Moreover, D5 said nothing about the amount of boron-containing ceramic in the composite. The affidavits submitted by the appellant in order to show that someone reproducing D5 would inevitably arrive at a product falling within claim 11 were tainted with methodological errors and unwarranted assumptions.

Inventive step

The problem that the invention set out to solve was the provision of ceramic composites having high metal concentrations (i.e. greater than 60% by volume) in which deleterious reaction phases were not formed to a significant extent, and the avoidance of slumping problems.

This problem was solved by the composite of claim 11 which could be prepared in accordance with the methods of claims 1 to 10 (which the appellant acknowledged to be novel and inventive). Said product was distinguished from the prior art in that it had a density of at least 95% theoretical, an Al content of at least 60%, and a specified low level of the reaction product of boron carbide and Al. None of the cited references was able to produce such a composite, which therefore could not be obvious in the light of the references cited.

In particular, D1 indicated that merely increasing the metal content was not sufficient to densify the composite.

XII. Requests

The appellant requests that the decision under appeal be set aside and that the European patent be revoked, as far as pending claims 11 to 17 are concerned.

The respondent requests that the appeal be dismissed, or, in the alternative, that the patent be maintained according to auxiliary request 1 filed during oral proceedings.

1. Late-filed documents

Document D14 was filed by the appellant with the statement of grounds of appeal (letter dated 7 July 2008).

During oral proceedings, the respondent did not object to admitting this document into the proceedings, but criticised the fact that the appellant had not made a (complete) case regarding this document, as it should have done according to Article 12(2) RPBA. More specifically, the respondent argued that the appellant was not able to say whether the composites described in that document did or did not contain an amount of boron-containing ceramic which was at least 50% by volume of the total amount of boron-containing ceramics and reaction product.

However, the board considers that D14 which discloses a boron-containing ceramic-aluminium composite having at least 60% by volume of Al metal is prima facie highly relevant. The appellant had submitted arguments that the critical feature in question could be implicitly disclosed in D14 and had announced further evidence addressing this issue, evidence which was indeed filed with letter dated 16 August 2010 in the form of the affidavit of Mr Innus (D15). The respondent had been aware of the document since 2008 and had sufficient time to study it.

Therefore, document D14 is admitted into the procedure.

2. Novelty (main request)

2.1 The appellant cited document D5 ("the Lucas paper") as novelty-destroying for the subject-matter of product claim 11.

2.1.1 D5 concerns the matrix microstructure and interfacial precipitation of Al-7Si metal matrix composites (MMCs) containing B4C and SiC particulates processed by a stir-cast technique (page 222, right-hand column, second paragraph). One of the MMCs under investigation comprised 25 vol.-% of B4C as a particulate material and an Al matrix alloy A 356 containing 7 wt-% Si and minor amounts of Mg, Ti and Fe (page 222, right hand column, last paragraph and Table 1). This composite material was supplied by Dural Aluminium Composites Corporation, La Jolla, Ca., USA, in bar form. D5, page 223, left-hand column, first paragraph, states: "Details of the casting technique are considered proprietary by the manufacturer, but the basic processing steps include surface preparation of the reinforcement and then combining the reinforcement with the matrix by stir casting which facilitates suspension of the reinforcement in the molten metal. In all cases, the cast composites were hot isostatically pressed to reduce casting porosity."

The microstructure of the Al-B4C-MMCs is shown in the micrographs of Figure 2 on page 224 and reveals extensive reaction of the Al alloy matrix on and near the B4C interface, extending approximately 5 mym inward from the particulate surface. The typical reaction products of B4C reinforcement and aluminium are reported to be AlB and Al4C3 (page 227, right-hand column).

In his second affidavit Dr Chen subjected three of the micrographs of the Lucas paper to image analysing by high resolution digitising, handtracing of the various phases identified and software calculating the surface areas. He finds a value of 56% of the total B4C content of the composite of Figure 2a (Exhibit XGC4). In his first affidavit, Dr Chen estimated the porosity of the composite after densification by hot pressing to be between 1% and 2%, or, in other words, the density of the hot pressed material of Lucas as 98% to 99% of theoretical density.

Dr Chen finally states: "While I appreciate that on the one hand the Patentee describes in European Patent No. 1425254 only the production of composite form metal powder using an infiltration technique whilst on the other hand Lucas describes in his paper only the production of composites by stir-casting, it is my opinion that both of these production techniques could result in composite material which is very similar, if not identical. Indeed, just looking at the micrographs of the Lucas paper, I could not say by which method the illustrated composites were formed."

Dr Chen concludes that at least some of the composite material of the Lucas paper would fall within what the patentee defined in the opposed patent as novel material.

2.1.2 In the board's view, these arguments are neither convincing as such nor sufficient to deny novelty of the subject-matter of claim 11.

Firstly, D5 does not reveal the claim feature according to which "the amount of boron containing ceramic is at least 50 percent by volume of the total amount of boron containing ceramic and reaction product present in the composite."

Secondly, Dr Chen's assumption of a theoretical density of 98 to 99% is a mere estimation which is not supported by a corresponding disclosure in D5, but apparently based on data obtained from hot pressing of Al castings (D9 = exhibit XGC3, page 539, Figure 2). The board doubts whether results obtained from HIP experiments of a cast Al alloy IN738 can be readily transferred to composites containing a substantial amount of ceramic, such as boron carbide.

Lastly, and most importantly, the board is of the opinion that D5 in itself is not an enabling disclosure of a preparation method for the Al-B4C MMCs under investigation, because the paper clearly states that the process of manufacture is proprietary (i.e. kept secret by the supplier of the MMCs) and involves undisclosed process steps such as surface preparation of the reinforcement, the processing temperatures, and the details of the stir casting which were not part of the skilled person's common knowledge at the relevant time of the opposed patent. It is mere speculation when Dr Chen in his first affidavit (point 4) tries to fill the disclosure gaps of D5 as regards the method of producing the MMCs by referring to the so-called Duralcan process (D6, published in 1988). Although D6 does disclose a stir casting process for making Al MMCs, nothing in D5 indicates with the required certainty that the process described in D6 had indeed been used by Dural Aluminium Composites Corporation in the production of the composite material supplied to Lucas and co-workers.

2.1.3 The appellant cited T 77/87 (OJ EPO 1990, 280) "as making clear that where in a single document relied on there is an inconsistency or lack of teaching, then it [was] legitimate to look behind the document to another document or relevant teaching in order to understand properly the disclosure of that document." The appellant argued that a person skilled in the art in 2001 reading D5 and faced with a "stir casting" technique that was described in 1991 as proprietary would have no difficulty in selecting the Duralcan process and thus be equipped readily to reproduce the teaching of D5.

The board cannot accept this argument, for the following reasons.

Decision T 77/87 states: "Summarising, the inconsistency between abstract document (7) and its basic original document (7') would lead the man skilled in the art to ignore the abstract as erroneous and to consider as relevant teaching only the description according to the basic document" (Reasons, point 4.1.6). Thus T 77/87 refers to an inconsistency (an obvious error, a technical impossibility) in a document and how it is resolved by the skilled person. It does not deal with a situation where essential information is missing or deliberately withheld, as in the present case. In the case of D5 there is no error or technical impossibility which could or should be resolved by referring to some related basic document.

2.1.4 According to T 1437/07 (of 26 October 2009; Reasons, point 25), a "disclosure in a prior art document is novelty-destroying only if the teaching it contains is reproducible. This need for an enabling disclosure is in conformity with the principle expressed in Article 83 EPC. Thus, the requirements of sufficiency of disclosure are identical for a prior art document and a patent."

As pointed out above, the Lucas paper does not enable a person of ordinary skill in the art to produce the MMCs under investigation. It is also not clear and proven beyond reasonable doubt that the composite material supplied by Dural Aluminium Composites Corporation, La Jolla, Ca., USA, was made by the Duralcan process disclosed in D6.

2.1.5 The board therefore concludes that D5 does not anticipate the subject-matter of claim 11.

2.2 No further documents have been cited against novelty.

Document D14 does not clearly and unambiguously disclose ceramic-aluminium composites having densities exceeding 95% of theoretical density as called for in claim 11 of the opposed patent.

Document D8 was published on 2 October 2001, after the priority date of the patent in suit. As the board finds the priority of the patent in suit of 29 August 2001 to be valid, D8 does not belong to the state of the art under Article 54(1) and (2) EPC.

The board, having examined the remaining prior-art documents, concludes that claim 11 satisfies the requirements of Article 54(1) and (2) EPC.

The same applies to dependent product claims 12 to 17 which refer directly or indirectly back to claim 11.

3. Inventive step

Main request

3.1 As far as the subject-matter of claims 11 to 17 is concerned, the opposed patent relates to boron containing ceramic-aluminium composites of high density and high aluminium content.

3.2 The board had first to decide which one of the documents D4, D5 and D14 would qualify as the most suitable starting point for assessing inventive step. It considers that the most relevant prior art is to be found in documents disclosing similar boron-containing ceramic metal composites having a high density and containing a substantial proportion of Al metal or alloy, as for instance in documents D4 and D14.

The board disregards D5 for the assessment of inventive step because it does not enable the skilled person to actually reproduce the aluminium-ceramic composites described therein.

3.2.1 Of the first mentioned documents, D4 discloses ceramic-metal composites wherein the metal is Al and the ceramic phase consists of at least two boron-containing phases and is present in an amount of at least about 20% by volume of the composite (claims 1, 2 and 6; column 4, lines 11 to 23; column 7, line 17 to column 8, line 4). D4 does not disclose a concrete example of an Al-B4C composite and also fails to disclose composites having an Al content of at least 60%.

The appellant argued that D4 taught the desirability of high aluminium-boron carbide composites, particularly for vehicular parts, and that it described by reference to D2 (column 8, lines 2 to 4) the infiltration methods that could be used for preparing them.

The board cannot agree. D4 clearly advocates against high aluminium contents in the composite (column 4, lines 16 to 19). The preferred embodiments contain at least about 50%, the most preferred embodiments at least about 85% by volume of the ceramic phase, and consequently less than 50%, preferably even less than 15% of Al metal. The infiltration method described in D2 likewise yields composites of 1 to 40% by volume of Al (see claim 4 and examples 1 and 2), which is substantially below the aluminium percentages claimed in claim 11 of the opposed patent. For these reasons, D4 neither directly nor by way of reference to D2 suggests the claimed high Al composites.

3.2.2 The board regards D14 as representing the closest prior art, because it disclosed a boron-containing ceramic - aluminium composite having at least 60% by volume of Al metal densified to a high degree. See column 4, line 44 to column 5, line 34; claim 8; Figure 1; column 2, lines 24 to 30.

3.3 The next step in assessing inventive step is to define the problem underlying the patent in suit in the light of D14.

3.3.1 It can be derived from the description of the opposed patent, paragraphs [0006] and [0010], that one object of the claimed invention is the provision of a substantially dense boron carbide aluminium metal matrix composite having a high Al content and having improved bonding between the boron carbide and the aluminium. The patent in suit attributes this improved bonding "to the production of reaction phases between the boron carbide and aluminum in a controlled manner due to the low infiltration temperatures" (paragraph [0010], second sentence). According to paragraph [0033], "the boron containing ceramic-aluminum composite of the present invention has improved bonding resulting in a composite that is both light weight and stiffer than aluminum, while retaining much, if not all, of the toughness of aluminum. Because of this, the composite is particularly useful for vehicular parts."

3.3.2 However, no direct comparison is available between the composites of D14 and those of the opposed patent as regards the bonding strength between the boron carbide and the aluminium matrix. Therefore, an improvement over D14 cannot be acknowledged.

3.3.3 The board also considered the claim feature according to which "the amount of boron containing ceramic of the total amount of boron containing ceramic and reaction product present in the composite is at least 50% by volume". It is not apparent what the contribution of this feature is with respect to the bonding between the ceramic and the matrix. Example 3 of the opposed patent exhibits an amount of boron containing ceramic of the total amount of boron-containing ceramic and reaction product present in the composite of less than 50% by volume and is therefore not in accordance with the invention as now claimed in claim 11. In view of the high amount of reaction phases, one would expect comparably poor ceramic-matrix bonding. Nevertheless one observes that the mechanical properties of the composite of example 3 are far better in terms of strength, hardness and elastic modulus than those of the composites of examples 1 and 2.

TABLE

---------------------------------------------------

Example No. 1 2 3 (comp.)

---------------------------------------------------

Strength MPA 220 200 450

Hardness kg/mm**(2) 350 500 550

Elastic modulus GPa 65 70 150

---------------------------------------------------

Therefore, the claim feature at issue is not related to the technical problem and to its solution as set out in the description of the opposed patent and cannot be taken into account when formulating the objective technical problem underlying the opposed patent.

However, the respondent offered the following explanation for the superior mechanical properties of example 3. The improvement of the properties of example 3 over those of examples 1 and 2 was due to an additional heat treatment step at 1025ºC for 5 minutes. Said heat treatment also increased the proportion of reaction product.

3.3.4 The technical problem underlying the patent in suit in the light of D14 is therefore seen as providing a substantially dense boron containing aluminium metal matrix composite having a high Al content and a high bonding between the boron carbide and the aluminium matrix.

3.4 As a solution to this problem, the patent in suit proposes a composite according to claim 11, characterised in that the amount of boron-containing ceramic is at least 50 percent by volume of the total amount of boron-containing ceramic and reaction product present in the composite and in that the density is at least 95% of theoretical density.

3.5 The next step is to verify whether the problem has actually been solved.

Examples 1 and 2 of the opposed patent illustrate boron-containing aluminium composites having a high density exceeding 95% of theoretical density, an Al content of respectively 73% and 65%, and mechanical properties (in terms of strength, hardness and elastic modulus; see table under point 3.3.3) which are indicative of a substantial bonding between ceramic and matrix.

In view of this experimental evidence, the board is satisfied that the technical problem is successfully solved.

3.6 It remains to be decided whether the proposed technical solution is obvious in view of the prior art.

3.6.1 The boron carbide - aluminium metal matrix composites (MMCs) disclosed in D14 have a composition of about 10 to 30 weight-% boron carbide, about 70 to 90 weight-% of a metal matrix material and less than about 3 weight-% of metal additives (see claim 8). These additives are added to improve the chelating properties of the metal matrix material by forming intermetallic bonds (column 4, lines 5 to 8; claims 9 and 13). A typical formulation is an MMC of Al alloy 6601 and 20 weight-% boron carbide (column 5, lines 13 to 18).

As the opposition was directed against the product claims, not the method claims, a distinction between these types of claims is indispensable.

The MMCs according to D14 are formed by a powder metallurgical consolidation process involving the steps of dry blending, high pressure pressing and heating process (45 minutes at 625ºC) (step S16 in Figure 2; column 3, lines 1 to 8; column 4, lines 44 to 54). Evidently, such a process differs from the preform infiltration process according to claim 1 of the opposed patent.

However, D14 is nevertheless relevant for the composites claimed in claim 11 of the opposed patent, because these are not, or not necessarily, prepared by the process according to claim 1.

3.6.2 The claim feature according to which "the amount of boron containing ceramic is at least 50 percent by volume of the total amount of boron containing ceramic and reaction product present in the composite" is not explicitly disclosed in D14. Moreover, it results from the affidavit of Mr Innus (points 14 to 16) that under the reaction conditions of D14 (45 minutes at 625ºC), a typical starting composition of 60 weight-% B4C, 6% Si as an additive, and remainder Al would lead to a composition of the MMC of 57.5% B4C, 6.6% Si, 28.5% Al, 2.6% Al4C3 and 4.9% AlB2, yielding a ratio of boron carbide to the total amount of reaction products and boron carbide of 88.5%, i.e. well within the claimed range. These calculations of Mr Innus and the underlying assumptions have not been contested. The board therefore concludes that the MMCs prepared in accordance with D14 implicitly satisfy the above-mentioned claim feature.

It follows that the MMCs of D14 also exhibit a high ceramic-matrix bonding and, consequently, high strength and fracture resistance. This is in fact what is explicitly disclosed in D14 (column 3, lines 8 to 20; column 5, lines 14 to 34).

3.6.3 According to claim 8 of D14, the densities of the composites range from 2.5 to 2.8 g/cm**(3). This roughly converts to about 93% to 98% of theoretical density, calculated for a composition of 90% Al and 10% B4C, and disregarding any reaction product formed (density B4C = 2.52 g/cm**(3), density Al = 2.7 g/cm**(3)). Although it may be derived from column 2, lines 24 to 30, that recent powder metallurgical consolidation techniques, as employed in D14, yield composites of 99% theoretical density, there is no unambiguous and explicit disclosure in D14 of densities exceeding 95% of theoretical density as stipulated in claim 11 of the opposed patent.

3.6.4 The board is of the opinion that the skilled person would have no difficulty in bridging the minor gap between the B4C/Al MMCs already having high densities of 2.5 to 2.8 g/cm**(3) disclosed in D14 and the subject-matter of claim 11 of the opposed patent, if necessary by increasing the pressure in the HIP (hot isostatic pressing) process and/or the sintering time, so as to arrive at a composite having a density of at least 95% of theoretical density. D14 teaches in the general statement in column 2, lines 24 to 30, that recent powder metallurgical consolidation techniques yield composites of 99% theoretical density. This is a confirmation that such high densities could be achieved by the HIP/sintering process disclosed in D14.

3.7 For these reasons, the subject-matter of claim 11 does not involve an inventive step (Article 56 EPC). The main request is therefore not allowable.

First auxiliary request

3.8 The board in its examination of the appeal is bound by the statement of the opponent under Rule 55(c) EPC of the extent to which the patent is opposed (G 9/91, Reasons, point 5, first sentence). Decision G 9/91 (OJ EPO 1993, 408; Order, first sentence), states that "[t]he power of an Opposition Division or a Board of Appeal to examine and decide on the maintenance of a European patent under Articles 101 and 102 EPC depends upon the extent to which the patent is opposed in the notice of opposition pursuant to Rule 55(c) EPC."

3.9 Granted claims 1 to 10, 20 and 21 are not comprised in the opposition procedure. Therefore, corresponding claims 1 to 12 of the auxiliary request are not under scrutiny by the board.

Consequently, the case is to be remitted to the department of first instance with the order to maintain the patent on the basis of this auxiliary request.

Order

ORDER

For these reasons it is decided that:

1. The decision under appeal is set aside.

2. The case is remitted to the department of first instance with the order to maintain the patent on the basis of claims 1 to 12 according to auxiliary request 1 filed at the oral proceedings and a description to be adapted.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility