Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventors Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Technologies
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • Core activities
          • Stories and insights
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Technologies
        • Go back
        • Overview
        • Innovation against cancer
        • Assistive robotics
        • Space technologies
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
          • Go back
          • Overview
          • Publications
        • Research universities and public research organisations
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0263/95 (Catalyst/UOP) 29-05-1998
Facebook X Linkedin Email

T 0263/95 (Catalyst/UOP) 29-05-1998

European Case Law Identifier
ECLI:EP:BA:1998:T026395.19980529
Date of decision
29 May 1998
Case number
T 0263/95
Petition for review of
-
Application number
87311118.1
IPC class
B01J 23/62
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 47.22 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Layered dehydrogenation catalyst particles

Applicant name
UOP
Opponent name

(01) Degussa AG

(02) SÜD-CHEMIE AG

Board
3.3.05
Headnote
-
Relevant legal provisions
European Patent Convention Art 54 1973
European Patent Convention Art 56 1973
Keywords

Novelty (yes) - method of preparation disclosed in the citation(s) does not inevitably lead to the claimed product

Inventive step (yes)

Improvement not expectable in view of prior art

Catchword
-
Cited decisions
T 0002/83
Citing decisions
-

I. European patent No. 0 320 549 based on application No. 87 311 118.1 was granted on the basis of nine claims. Claim 1 as granted reads as follows:

"1. A particulate catalyst comprising a combination of catalytically effective amounts of platinum group metal component and a modifier metal component selected from tin, germanium, and mixtures thereof, with a solid refractory oxide support characterized in that said solid support has a nominal equivalent diameter of at least 850 micrometres, and the platinum group metal and modifier metal components are impregnated on the surface of the catalyst particles, the average concentration of the platinum group component and modifier metal component in the outside 100 micrometre layer of the catalyst particle are each at least twice the concentration of the respective component in the 200 micrometre diameter centre core of the catalyst particle."

Claim 8 is directed to a hydrocarbon conversion process in which a convertible hydrocarbon is contacted with the claimed catalyst.

II. The Appellant (Opponent 01) and Opponent 02 (party to the appeal proceedings as of right pursuant to Article 107 EPC) filed notices of opposition requesting revocation of the patent on the grounds of lack of novelty and lack of inventive step. During the opposition procedure, the parties relied inter alia on the following documents:

D5: EP-A-0 094 684,

D6: US-A-3 909 451,

D8: US-A-4 049 581,

D11: GB-A-1 590 124.

III. In a decision posted on 23 January 1995, the Opposition Division rejected the opposition. It took the view that the catalyst according to granted claim 1 was not implicitly disclosed in D6 as shown by the Respondent's experimental report of 12 December 1994. Novelty was also acknowledged with respect to D5 on the ground that D5 did not quantify the distribution of tin throughout the support. Concerning inventive step, the Opposition Division held that the higher total normal olefin selectivity achieved with the claimed catalyst in comparison with a catalyst support having a uniform distribution of tin could not be predicted from D5. Furthermore, a technical prejudice had to be overcome to arrive at the present non-uniform distribution taking into account the teaching of D8. The claimed catalyst was also not obvious in view of the teaching of D5 and D11 since rhenium was not equivalent to Sn or Ge.

IV. The Appellant lodged an appeal against this decision. It relied on an additional document, ie Heterogeneous catalysis in practice, 1980, MacGraw-Hill Book Company, pages 82-84 (hereinafter D14) and submitted additional experimental data in both its letters of 1 June 1995 and 14 May 1996. The Respondent (Patentee) filed five sets of amended claims as First, Second, Third, Fourth and Fifth auxiliary requests with its letter dated 10. March 1997. Oral proceedings were held on 29 May 1998. Opponent 02, although duly summoned, was not represented at these oral proceedings.

V. The Appellant's arguments as regards granted claim 1 can be summarised as follows:

The subject-matter of claim 1 lacked novelty over the disclosure of D5 or D6 since a catalyst having the metal distribution defined in claim 1 was inevitably obtained by following the preparation procedure disclosed in D5 or D6. The Appellant's experimental reports submitted at the appeal stage were based on an exact repetition of the procedure used in example 1 of D5 and confirmed that tin was deposited on an outer layer of the support. The ZnO:Al2O3 mole ratio was exactly the same as in example 1 and the repetitions thereof with starting products having a different loss on ignition (LOI) or with higher amounts of acid (experiments of 14 May 1996) all led to the same results, ie to the claimed concentration profile. These experimental results were not inconsistent with the Respondent's results submitted on 20 December 1993 since the Respondent had not exactly repeated example 1 of D5. The tin distribution measured by the Respondent could be attributed to the selected composition of the support and to the very strong acidity of the impregnation solution. At the oral proceedings the Appellant further argued that it was clear to the skilled person without duplication of example 1 of D5 that tin was concentrated in a layer at the surface of the particles. As D5 disclosed a stoechiometric excess of zinc oxide and the tin chloride solution sprayed onto the surface of the support was hydrolysed, deposition of the tin component occurred at the surface of the support. Furthermore, impregnation to incipient wetness led, according to D14, to the metal being concentrated in an outer shell. As D5 did not teach adding acid to the tin chloride, the skilled person would have added only a small amount thereof, and according to D14 this resulted in a non-uniform deposit.

The catalysts of D6 were prepared by using the same starting products and the same process as in the patent in suit. Therefore, they inevitably exhibited the same metal distribution as the claimed catalysts.

The claimed catalyst did not involve an inventive step in view of the teaching of D5, D6 and D11. As D6, contrary to D5, dealt with the selectivity of the catalyst, it was the closest prior art. An improved selectivity over the catalysts of D6 was not achieved since according to D6 a catalyst containing an alkali or an alkaline earth component already led to a minimisation of the side reactions. The technical problem of providing a catalyst having in particular an improved selectivity for the dehydrogenation of n-paraffins into n-olefins was adressed in D6. D6 prescribed no particular distribution for Pt and Sn and contained no technical prejudice in this respect. The problem in D5 was to provide a catalyst suitable for the dehydrogenation of n-paraffins, which exhibited improved activity and stability. It was obvious to combine the teaching of D6 and D5 to arrive at a dehydrogenation catalyst having the noble metal concentrated in a layer at the surface of the support. It was common general knowledge before the filing date that side reactions such as isomerisation, aromatisation and cracking were caused by a long time of contact of the reactants and products with the catalyst. With the metals being concentrated in an outer shell, the contact time was shorter, and thus, it was obvious to deposit tin as a layer at the particle surface. Furthermore, D6 required an intimate association of tin and platinum and the skilled person knew from D11 that tin and rhenium were both modifiers and produced similar effects in a dehydrogenation catalyst. Thus, in view of the teaching of D5 and D11, the skilled person would have deposited Sn, like Re, as an outer layer on the pellets. As D8 concerned reforming catalysts the skilled person would not have considered its teaching.

VI. The Respondent has put forward inter alia the following arguments:

An exact comparison with example 1 of D5 could not be carried out as the loss on ignition of the starting materials was not given in D5. Furthermore, it was well known that SnCl2.2H2O could not be dissolved in water to form a true solution unless acid was added. Therefore, either the inventors of D5 also added acid or they attempted to spray a suspension. Thus, the teaching of D5 was ambiguous as to how to operate. The Appellant had not exactly repeated the disclosure of example 1 in the experimental report of 14 May 1996 since the mole ratio ZnO:Al2O3 was outside the range specified on page 4 of D5. According to the case law of the Boards (for example T 0793/93) the standard of proof as regards implicit lack of novelty was "beyond all reasonable doubt". In the present situation, it was not beyond all reasonable doubt that the reworking of example 1 of D5 gave a product as defined in claim 1. Concerning D6, the quantity of acid stated in D6 was much greater than the amount of 1% by weight of the support used in the patent in suit. The Respondent's data submitted on 12 December 1994 about the duplication of the impregnation procedure disclosed in D6 showed uniform distribution of the platinum.

As regards inventive step, the Respondent considered that D6 was the closest prior art since tin was an essential part of the catalytic material whereas in D5 it was part of the support. It was not common general knowledge at the filing date that the side reactions were diminished by decreasing the contact time of the reactants and products with the catalyst. The Appellant's affirmation was not supported by any document. There was nothing in the cited documents which could have suggested to the skilled person that any improvement in selectivity could be achieved by depositing both the Pt and Sn components on an outer layer. Rhenium could not be similar to both tin and the noble metals and its properties were manifestly closer to those of the noble metals. The fact that D6 required intimate association of Sn and Pt did not mean that they both had to be surface impregnated.

VII. The Appellant requested that the decision under appeal be set aside and that the patent be revoked. The Respondent requested as main request that the appeal be dismissed and the patent maintained. As auxiliary requests 1 to 5, the Respondent requested that the decision under appeal be set aside and that the patent be maintained on the basis of any of the auxiliary requests 1 to 5 as filed with the Respondent's letter dated 10 March 1997, in the order indicated in that letter. No request was presented by the party to the proceedings as of right.

1. The appeal is admissible.

Novelty of claim 1 of the main request

2. D5 discloses a supported noble metal catalyst containing from 0.0001 to 10 wt% noble metal selected from Pt, Ir, Os, Pd, Rh, Ru, the support being selected from aluminas, titania, zirconia, magnesia, thoria, chromia, zinc titanate, zinc aluminate, and SnO/ZnAl2O4. The noble metal content is concentrated in the surface range of the support, ie it is positioned as a relatively thin layer on, at, or very near the surface of the support, with very little noble metal involved in the interior portions of the support. A preferred support for butane dehydrogenation is SnO/ZnAl2O4. The catalyst particle ranges upward in size from about 1/8 inch (3.175 mm) pellets, spheres, or aggregates of equal volume (see claims 9 and 6; page 3, lines 8-11; page 4, lines 4-15). Example I describes the preparation of a SnO/ZnAl2O4 support, comprising the steps of spraying a solution of SnCl2.2H2O onto zinc aluminate granules, drying, and calcining in air. In examples III and IV, 1/8 inch cylindrical pellets of the SnO/ZnAl2O4 support are impregnated with an aqueous solution of (NH4)6Pt(SO3)4, dried and calcined. The resulting catalyst contains Pt for example in 28.7. vol.% of the catalyst particle, this value being calculated from the thickness of the impregnated layer. It was not contested that the platinum distribution obtained in the catalyst of D5 falls within the platinum concentration profile as defined in claim 1 of the patent in suit. However, D5 is silent about the distribution of the tin component on the support. Novelty of the claimed catalyst depends on whether or not the method of preparation of the SnO/ZnAl2O4 support as described in example I inevitably leads to an average concentration of the tin component as defined in claim 1. The Appellant and the Respondent have both submitted experiments which, so they argued, represented an exact repetition of the procedure of example I, but similar results as regards the tin distribution were not achieved.

2.1. According to example I, 1.90 lb of SnCl2.2H2O are dissolved in the volume of water representing the pore volume of the calcined zinc aluminate granules and the solution is sprayed onto the granules with an atomiser (impregnation to incipient wetness). The Respondent has pointed out that the addition of SnCl2.2H2O into water as performed by the Appellant in his experiments of 1. June 1995 did not give a clear solution but a white cloudy solution with white solid particles. However, both the Appellant and the Respondent agreed that a clear and stabilised solution can be obtained by addition of a certain amount of hydrochloric acid, even if it remained unclear which minimum amount of HCl had to be added in order to stabilise the stannous chloride in the form of a clear solution during the period of preparation. As, in example I of D5, the addition of an acid is not mentioned although SnCl2.2H2O is said to be dissolved in the water and the resulting solution sprayed, D5 obviously lacks information as to how the inventors have operated. As pointed out by the Respondent and not contested by the Appellant, the inventors of D5 might have added a certain amount of hydrochloric acid to the mixture in order to stabilise the stannous chloride in form of a true solution or they might have sprayed a suspension. D5 is silent about the distribution of tin on the catalyst support, and therefore, the skilled person who repeats the method of example I is not restricted in the choice of the missing operating conditions to those conditions leading to a specific distribution of tin. Furthermore, the loss on ignition (LOI) of the starting products used in example I is not indicated so that it is not clear from the amounts of zinc oxide and alumina stated in this example whether or not the ZnO:Al2O3 mole ratio is 1.18 or, in other words, whether or not a stoechiometric excess of zinc oxide was used. It should be noted in this context that according to page 4 of D5, the ZnO:Al2O3 mole ratio in suitable zinc aluminate is preferably in the range of about 1.0-1.06, more preferably about 1.00-1.01. Therefore, to repeat example 1 of D5, assumptions have to be made as to (i) whether a solution or suspension was sprayed, (ii) as to how a solution was prepared, in particular to which extent it was acidified, and (iii) as to which ZnO:Al2O3 mole ratio was used to prepare the zinc aluminate support. From the Appellant and Respondent's submissions in the course of the appeal procedure, it can be inferred that the said ZnO:Al2O3 mole ratio and the amount of acid used to stabilise the stannous chloride affect the distribution of tin (see in particular page 4 of the Appellant's letter dated 1. June 1995, page 3 of the Respondent's letter dated 10. March 1997, and pages 3-4 of the Respondent's letter of 23 October 1995). It is immediatly apparent that spraying a suspension or a solution may also influence the tin distribution, as indicated by the Respondent. Furthermore, it can also be inferred from the number of experiments submitted by the parties that the operating conditions or parameters not given in example 1 of D5, in particular the HCl concentration and the true ZnO:Al2O3 mole ratio (the ZnO:Al2O3 mole ratio calculated taking into account the LOI) have such an influence on the tin distribution that a tin distribution falling either within the concentration profile defined in claim 1 or outside can be obtained depending on the choice of these parameters (see the Respondent's experiments of 20 December 1993; the repetition of these experiments by the Appellant using the same high HCl concentration but a different ZnO:Al2O3 mole ratio on page 4 of the Appellant's letter dated 1 June 1995; the Appellant's experiments in the letters dated 1 June 1995 and 14 May 1996 with stannous chloride solutions having HCl concentrations lower than in the Respondent's experiments of 20 December 1993 and a ZnO:Al2O3 mole ratio of 1.18 or greater). For the preceding reasons, the Board is not convinced that by following the procedure of example I of D5, a skilled person would inevitably arrive at a catalyst having the tin distribution as defined in claim 1.

2.2. The Appellant's arguments that it was clear to the skilled person without repeating example I of D5 that tin was deposited as an outer shell (see point V above) cannot be accepted. They are based on the affirmation that a stoechiometric excess of zinc oxide is used in example 1; however, as indicated above, such an excess cannot in fact be deduced from D5 since example I contains no data about the LOI of the starting products, and the preferred values stated on page 4 for the ZnO:Al2O3 mole ratio are 1.00 to 1.01. Furthermore, these arguments rely on the disclosure of D14 about the distribution of platinum on an alumina support, which has been impregnated by the incipient-wetness method using chloroplatinic acid in the presence or not of nitric or hydrochloric acid in the solution (see page 83, last paragraph). The Appellant has given no reasons why the impregnation of stannous chloride on a zinc aluminate support should give a tin distribution similar to the platinum distribution resulting from an impregnation of chloroplatinic acid on an alumina support. Moreover, the statement on page 84 of D14 (last four lines of the third paragraph) does not disclose a metal concentration profile as defined in claim 1. It follows from the above that the subject-matter of claim 1 is new vis-à-vis the teaching of D5.

3. D6 discloses a hydrocarbon dehydrogenation catalyst comprising a combination of catalytically effective amounts of a platinum group component and a tin component with a porous refractory carrier material such as alumina. This catalyst is prepared by impregnating the porous carrier material with a solution of a complex chlorostannate (II) chloroplatinate anionic species, said solution being stabilised in contact with said carrier with an aqueous halogen acid, for example with aqueous hydrochloric acid at a pH of less than about 1, drying and calcining the impregnated carrier material. Particularly good results are obtained when the catalyst also contains an alkali or alkaline earth component. Spherical particles of gamma-alumina having a diameter of 1/16 inch (1587 µm) are used in the examples of D6 (see col. 3, lines 33-51; col. 13, lines 1-14; claims 1, 9 and 12). D6 does not indicate the distribution of the platinum group metal and tin component on the support.

To support his arguments that the catalysts of D6 were prepared using the same starting products and the same process as in the patent in suit and, thus, had the same metal distribution, the Appellant has in particular compared the preparation of the impregnation solution described in column 13, lines 19-33 of D6 with that of example 2 of the patent in suit. In the preparation method disclosed in D6, the aqueous impregnation solution containing a complex chlorostannate (II) chloroplatinate anionic species is stabilised by adding concentrated hydrochloric acid in an amount equivalent to about 10 wt% of the alumina particles to be impregnated (see col. 13, lines 19-33). As pointed out by the Respondent in his letter dated 23. October 1995, the addition of "1% of HCl" indicated in example 2 of the patent in suit is based on the weight of the support and not on the solution. Therefore, the amount of hydrochloric acid used in example 2 of the patent in suit is not the same as that indicated in col. 13, lines 30-33 of D6. Furthermore, Fig. 3 of the patent in suit shows that the process of example 2 leads to a non-uniform distribution of Sn and Pt as defined in claim 1 and the Respondent's experimental report in his letter of 12 December 1994 shows that under the conditions disclosed in col. 13 of D6 the platinum is uniformly distributed throughout the support. In view of the different amounts of acid used in D6 and in example 2 of the patent in suit and of the said distribution data, the Board concludes that the teaching of D6 does not destroy the novelty of the catalyst according to claim 1.

4. The Board is satisfied that the subject-matter of claim 1 is also new with respect to the disclosure of the other cited documents. This not being in dispute, there is no need to give reasons for this finding.

Inventive step of claim 1 of the main request

5. At the oral proceedings both the Appellant and the Respondent considered that D6 represents the closest prior art. Taking into account that D6 deals with the problem of providing catalysts with improved activity, selectivity and stability when employed in the dehydrogenation of dehydrogenable hydrocarbons, whereas D5 is silent about the selectivity of the catalysts and discloses that the tin oxide forms part of the support, the Board can follow this approach.

5.1. As indicated in point 3 above, D6 discloses a catalyst comprising a tin component in combination with a platinum group metal component on a refractory oxide support. According to D6, such a catalyst prepared by the method described therein (see point 3 above) exhibits an improved activity, selectivity and stability in the dehydrogenation of dehydrogenatable hydrocarbons. When the catalyst contains an alkali or alkaline earth component in addition to the said tin and platinum group components, it is particularly useful in the dehydrogenation of long chain normal paraffins to produce the corresponding normal mono-olefins with minimisation of undesirable side reactions such as cracking, skeletal isomerisation and aromatisation (see col. 3, line 33 to col. 4, line 2).

With respect to this prior art, the technical problem underlying the claimed catalyst can be seen in providing a dehydrogenation catalyst of comparable activity and stability which exhibits an improved selectivity in the dehydrogenation of n-paraffins into n-olefins. The patent in suit proposes solving this problem by a catalyst having an average concentration of the platinum group component and of the tin (or germanium) component as defined in claim 1. In view of the statement in column 4, lines 18-35, of the patent in suit, examples 1 to 3 and Figures 1-2, which illustrate the n-paraffin conversion as a function of the period on stream and the total n-olefin selectivity for both the claimed catalyst and a catalyst having the platinum and tin components uniformly distributed throughout the support, it is credible that the said technical problem has actually been solved by the claimed catalyst. The Appellant contested at the oral proceedings that the problem of improving the n-olefin selectivity had been solved. The mere affirmation that an improvement in selectivity was not achieved because the catalyst according to D6 already led to a minimisation of the side reactions cannot be accepted in view of the comparative examples in the patent in suit and of Fig. 2 which show that further improvement in this respect was obtained. The fact that side reactions were minimised with the catalyst disclosed in D6 does not exclude the possibility that another catalyst further improves the n-olefin selectivity.

5.2. It can be inferred from D6 that, in the dehydrogenation of long chain n-paraffins to produce the corresponding normal mono-olefins, minimisation of side reactions is achieved with the catalyst comprising an alkali or alkaline earth component. However, D6 contains no information as to how the n-olefin selectivity of this catalyst might be improved. As the distribution of the platinum group component and of the tin component throughout the support are not mentioned in D6, this document would not have suggested to the skilled person that the said distribution might have an influence on the n-olefin selectivity.

5.3. D5, which has been analysed above (see point 2), discloses dehydrogenation catalysts having the noble metal deposited on the outermost layer of the catalyst support pellets, with very little noble metal involved in the interior portion of the support. The catalysts of D5 are particularly suitable for the dehydrogenation of butane to provide butenes and butadiene. In addition to the noble metal of the platinum family the catalysts may also contain rhenium as a further noble metal (see claim 2 and page 5, lines 26-27). D5 teaches that particularly for the diffusion limited hydrocarbon conversion processes, only the outer layer of the catalyst is of importance for the activity, and any noble metal inside the catalyst support is substantially wasted and of no benefit. Therefore, by depositing the noble metal near the surface of the support, far less expensive noble metal is needed, representing significant savings in noble metal supported catalyst costs. The surface-impregnated catalyst disclosed in example IV, which contains 0.25. wt% platinum on a SnO/ZnAl2O4 support, is equivalent in activity to a substantially uniformly impregnated catalyst containing 0.6 wt% Pt when used for the dehydrogenation of n-butane and more stable than said catalyst (see page 2, lines 1-20; example IV). However, D5 is silent about the selectivity of the catalyst and does not contain any information from which the skilled person could have inferred that the n-olefin selectivity might be improved by depositing the noble metal, let alone both the noble metal and the tin or germanium component, on the outermost layer of the catalyst support. Without the expectation that an improvement in the n-olefin selectivity might be achieved by the noble metal distribution disclosed in D5, ie without the expectation of solving the technical problem stated above, the skilled person confronted with the said problem would not have been encouraged to combine the teaching of D6 and D5 and, thus, to deposit the noble metal and the modifier on the outermost layer of the support (see T 2/83, OJ EPO 1984, 265).

5.4. In the Board's judgment, the teaching of D11 does not change the preceding finding, and the Appellant's arguments concerning the combination of this teaching with those of D5 and D6 (see point V above) are not convincing for the following reasons: D11 concerns low density alumina particles having a high micropore volume and discloses that these alumina particles are useful as a support for a platinum group component alone or in combination with a tin component, a rhenium component and/or a germanium component to yield an improved reforming catalyst (see page 3, lines 23-25 and 44-48). According to page 4, lines 43-44, the catalysts may be used for the reforming of petrol and the dehydrogenation of a dehydrogenatable hydrocarbon. Catalysts containing Pt and a tin component are said to exhibit improved activity and activity stability with respect to the reforming of gasoline boiling range feed stocks. The method of impregnation described on page 3, lines 32-37, suggests that an even distribution of platinum on the support was aimed at. This document neither suggests depositing the catalyst component(s) on an outermost layer of the support, nor adresses the problem of improving the n-olefin selectivity in the reaction of dehydrogenation of n-paraffins. Furthermore, Sn, Ge and Re are listed as possible metal or metal component to be used in combination with the platinum group metal, but D11 does not teach that the tin component acts in a similar way as the rhenium component or is equivalent thereto when used in combination with a platinum group component for the dehydrogenation of n-paraffins into n-olefins. In these circumstances, the teaching of D11 would not have given the skilled person an incentive to combine the teaching of D5 and D6 and to deposit the tin component in the outermost layer of the support in order to improve the n-olefin selectivity of the catalysts according to D6.

5.5. The Appellant's affirmation at the oral proceedings that it was common knowledge before the filing date that side reactions were caused by a long contact time of the reactants and products with the catalyst (see point V), has been contested by the Respondent and was not supported by any document illustrating the common general knowledge. Taking into account that in such a situation the burden of proof lies on the party which has made this affirmation, this argument cannot be taken into consideration for the assessment of inventive step.

5.6. D8 teaches that catalysts containing a platinum group component and a tin component in which both these components are uniformly distributed throughout the catalyst support exhibit excellent activity, stability and selectivity in hydrocarbon conversion processes (see col. 2, lines 5-24; and col. 4, lines 55-60). This teaching would not have encouraged the skilled person confronted with the problem of improving the n-olefin selectivity in the dehydrogenation of n-paraffins to concentrate both the tin component and the platinum group component in an outermost layer of the support.

6. It follows from the above that the catalyst according to claim 1 of the main request involves an inventive step and that claim 1 meets the patentability requirements set out in Article 52(1) EPC.

7. As claim 8 of the main request is directed to a hydrocarbon conversion process which involves the use of a catalyst according to claim 1, the said process derives its patentability from that of the claimed catalyst. The same applies to the dependent claims 2-7 and 9. Therefore, claims 2 to 9 are also allowable. In these circumstances, there is no need to examine the auxiliary requests.

Order

ORDER

For these reasons it is decided that:

The appeal is dismissed.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility