Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventors Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Technologies
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • Core activities
          • Stories and insights
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Technologies
        • Go back
        • Overview
        • Innovation against cancer
        • Assistive robotics
        • Space technologies
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
          • Go back
          • Overview
          • Publications
        • Research universities and public research organisations
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0818/97 26-05-1999
Facebook X Linkedin Email

T 0818/97 26-05-1999

European Case Law Identifier
ECLI:EP:BA:1999:T081897.19990526
Date of decision
26 May 1999
Case number
T 0818/97
Petition for review of
-
Application number
90911455.5
IPC class
B24C 1/00
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 30.67 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Process for removing coatings from sensitive substrates, and blasting media useful therein

Applicant name
Church & Dwight Co., Inc.
Opponent name
Solvay (Société Anonyme)
Board
3.2.03
Headnote
-
Relevant legal provisions
European Patent Convention Art 100(a) 1973
European Patent Convention Art 100(b) 1973
Keywords

Sufficency of disclosure; measurement method

Inventive step (recognised)

Catchword
-
Cited decisions
T 0171/84
Citing decisions
T 0596/11

I. The appeal is directed against the decision dated 26. June 1997 of an opposition division of the European Patent Office, which rejected the opposition filed against the European patent EP-B1-0 463 121.

II. Claim 1 of said patent, as granted, reads as follows:

"A process for removing coatings from sensitive metal and composite surfaces, which comprises blasting said surfaces with a compressed air stream under pressures of 68.95-1034.22 kPa (10-150 psi), said stream containing as a blasting medium water-soluble bicarbonate particles selected from the group consisting of alkali metal and ammonium bicarbonates, characterized in that the process is carried out with a compressed air stream that is saturated with moisture, said bicarbonate particles having particle sizes within the range of 250-500 microns, in admixture with at least 0.2% of a hydrophobic silica flow/anti-caking agent, by weight of the bicarbonate."

Claim 6 of said patent, as granted, has the following wording:

"A blasting medium for removing coatings from sensitive metal and composite surfaces, which consists essentially of water-soluble bicarbonate particles selected from the group consisting of alkali metal and ammonium bicarbonates, characterized in that said bicarbonate particles have particle sizes within the range of 250-500 microns, in admixture with at least 0.2% of a hydrophobic silica flow/anti-caking agent, by weight of the bicarbonate."

III. The opponent (appellant) lodged the appeal on 19 July 1997 and paid the appeal fee on 19 August 1997. In his statement of grounds received on 31 October 1997, he maintained two of the objections raised before the first instance, namely that the patent in suit does not disclose the invention in a manner sufficiently clear to be carried out by a person skilled in the art (Article 100(b) EPC), insofar as it does not disclose the measurement method for the particle size of the blasting medium, and further that the invention as claimed does not involve an inventive step (Article 100(a) EPC). He also filed new documents D13 to D15, additionally to the documents D1 to D12 filed during the opposition proceedings (see below).

The patentee (respondent) in a written reply received on 19 May 1998 contested the arguments of the appellant and filed in support of his submission Exhibits A and B with, further, an affidavit of the inventor.

IV. Oral proceedings took place on 26 May 1999. During these proceedings, the parties relied essentially on the following documents among those cited:

D1: Particle Size Measurement, T. Allen, 1975, published by Chapman and Hall, London, pages 74 to 76 and 85 to 121.

D3: Letter dated 17 January 1990 of the applicant during the US proceedings concerning US-application 323412 (priority document).

D4: Décapage mécanique par grenaillage, R. Proner, Techniques de l'Ingénieur, pages M1494-1 to 12.

D5: Metal Handbooks, 9th Edition, vol. 5, 1987, pages 83 to 96, American Society for Metals.

D6: Brochure "Micro Blaster" of Comco Inc., 1986.

D9: GB-A-1 021 751.

D11: Fine Particle Measurement, C.ORR.., New York, The Macmillon Co., 1959, pages 6 and 7.

D12: Chemical Engineers Handbook, 4th Edition, 1963, McGraw-Hill Book Co., page 21-51.

D14: Brochure BI.EX from the appellant, pages 17 to 19 (not dated).

D15: Notice CER 91/805, Bicarbonate de Soude (1991).

Exhibit A: Treatise on Powder Metallurgy, vol. I, pages 131, 132; 1949; Interscience Publishers, Inc. (New York).

Exhibit B: Metal Handbooks, 9th Edition, vol. 7, pages 214, 215; American Society for Metals.

V. The appellant argued as follows:

(a) As to the alleged lack of disclosure:

A feature of the present invention is the size range of 250 to 500 microns of the bicarbonate particles. The patent in suit, however, does not mention the method of measuring said size. Several documents show that at least six different methods can be used therefor and that, moreover, the result varies according to the method, which is used. Differences of about 28% in the results can be found between different methods (see in this respect Exhibit B and D15).

In the patent in suit, as originally filed, a larger size range of 10 to 500 microns was given and there is no indication that different methods may have been used according to different ranges, for example one method for the range 10 to 250 microns and another method for the range 250 to 500. A single and same method was therefore used for the whole originally disclosed range. For the lower level of this range, namely 10 microns, the screening method is not appropriate, as indicated by some documents: D14, for example, discloses that this method cannot be used for the range 16 to 24 microns, and according to D11, only sizes above 40 microns can be measured by screening. The inventor himself in his declaration or affidavit does not indicate clearly which method he has applied.

Hence, the person skilled in the art is unable to know or to deduce from the disclosure of the patent in suit which method would be correct and he has no reason to prefer any one among the six possible methods.

(b) As to the inventive step:

The nearest prior art, namely D3, discloses a blasting medium consisting of bicarbonate particles of the type claimed in the patent in suit mixed with 0.5% by weight of the same hydrophobic silica flow agent. As to the bicarbonate, particle sizes of 65 to 70 microns are given. Thus, the subject-matter of the product claim, namely claim 6, of the patent in suit differs solely by the size range, which lies between 250 to 500 microns.

This claimed range can only be seen as the result of an arbitrary choice, since it is well-known that the determination of the particle size has to be selected according to the material to be treated and to the desired surface finish, as indicated in the description of the patent in suit (column 1, lines 41 to 42; column 2, line 51). The documents D5 and D6 provide a similar teaching, disclosing for example several kinds of abrasive material together with their typical applications or abrasive particle sizes selected with respect to the desired finish of the treated surface. The appropriate size is usually determined by means of tests.

For a person skilled in the art, it is moreover obvious that the larger the particles, the greater the impact, so that the blasting operation is realized quicker. Therefore, the results given in the affidavit are not surprising.

The use of saturated air according to the method claim 1 is also obvious, since it is always desired to avoid the expensive production of dry air. Moreover, this feature does not improve the blasting effect.

VI. The respondent essentially replied as follows:

Most of the cited documents clearly show that the most popular and commonly used method for measuring particle sizes is the screening method. Exhibit (B) moreover gives a size range from 5 to more than 500 microns of particle sizes, which can be measured by this method. Therefore, it is clear that this method is to be applied, when no indication of a specific method is given; should it have been intended that another method be used, it would have been expressly indicated.

Documents D3 and D6 are concerned with blasting methods in laboratories or particular places, in which dry air has to be provided. The present invention, however, aims at blasting for commercial uses, thus in an environment in which natural, that is to say humidity saturated air in most cases, is present. The claimed solution moreover is to be seen not only in the large sizes of the bicarbonate particles, but also in the combination of such particles with the flow/anti-caking agent. Before the present invention, there was a prejudice to employ large particles, since it was thought that damage to the treated surface would result, and bicarbonate compositions were exclusively used in a quite dry air.

V. The appellant requests that the decision under appeal be set aside and that the patent be revoked.

The respondent requests that the appeal be dismissed.

1. The appeal is admissible.

2. Sufficiency of disclosure (Article 100(b) EPC)

2.1. In the originally filed description and claims of the patent in suit, bicarbonate particles having particle sizes within the range of 10 to 500 microns were disclosed, and a preferred range of 250 to 300 microns was cited. Average particle sizes were also mentioned. However these data were given without providing any details regarding the method by which the particle sizes are to be measured. From several cited documents it is clear that different methods for measuring particle sizes were known before the priority date of the patent in suit and, further, that substantially different measurements are obtained, depending on the method which is used (see in these respects Exhibit B, Table 1; D15, page 5). Thus, in order to be able to carry out the present invention, the person skilled in the art must be able to determine the method for measuring the particle sizes.

2.2. In the present circumstances however the skilled person must be assumed to know that the most usual method therefor is the screening method, since it is the quickest and cheapest. This is confirmed by basic handbooks and textbooks, which represent the average technical knowledge of a skilled person (see e.g. decision T 171/84 (OJ EPO 1986, 95). According to D1, page 113, "sieving is probably the easiest and certainly the most popular method of size analysis"; In document D5, which specifically concerns abrasive blasting cleaning, the size specifications are all given in relation with screen openings, reference being made to US mesh or US standard screens; Exhibit (A) indicates that "particle size distribution of most metal powders ... is determined by conventional screen test methods. For many applications this type of test is sufficient to determine the suitability of the powder..."; Exhibit (B) also confirms this point: "Sieve analysis is the most widely used method for determining particle size distribution of metal powders". Even if metal powders are most mentioned, it is clear that most kinds of particulate solids are concerned.

In the Board's judgment, therefore, the skilled person would realise in the absence of any indication to use other methods that the screening method is to be used, more especially as testing standards for this method are well-known and were established in 1970 (Exhibit B).

2.3. The argument of the appellant, that document D15 shows that one of the largest manufacturers of bicarbonate uses two other methods, is not convincing, because first one must expect that a firm producing the powder itself relies on more precise methods than the users of this powder, and secondly the document D15 concerns a comparison between two nearly identical bicarbonate powders produced by competitors. In such a case, finer analyses are required. Moreover, in this paper, the two methods are specified, whereas in the case at issue, the Board bases it conclusion on the absence of any information as to the used method.

2.4. The appellant also argued that the sieving method would not have been seriously considered by the skilled person because of the lower limit of the range originally disclosed.

It is true that some of the cited documents are negative in respect of measurements of particle sizes lower than about 40 microns by the screening method. D1, on the same page 113, already mentioned above, discloses that sieving is restricted to powders having the greater proportion coarser than 75 microns. D11 gives a lower limit of 40 microns for sieve methods, whereas D12 mentions standard sieve No. 400 for 37. microns as the lower level.

However, from some of these documents and others, it can be seen nevertheless that the lower limit of 10. microns is not in consistent with the use of the sieving method. D1, once more, but this time on page 120, discloses micromesh sieving available in aperture size from 5 to 150 microns (D5 also gives a size range of 10 to 100 microns for microabrasive blasting). Exhibit B, Table 1, lists the different measurement methods for particle size together with their useful size range; For the sieving method, a size range between 5 to 800 microns is given. D9, page 3, lines 48 to 53, mentions sieve analysis for sizes between 30 to 5 microns.

The conclusion which can be drawn from this information is that it may not be easy to measure particle sizes between 40 to 5 microns by screening, but that it is nevertheless quite possible, so that in any case the mention of a lower limit of 10 microns is not inconsistent with the use of the conventional screening method.

2.5. Moreover, the person skilled in the art is made aware by the originally filed description of the patent in suit of a number of patent specifications relating to previous applications of sodium bicarbonate or other blasting media, and it is clear from the whole above description that the aim of the present invention was to improve the properties of the blasting medium disclosed in these documents.

It is to be assumed that the skilled person seeking to overcome the absence of any information on the measuring method would look through these citations. The US Patent No. 4 731 125, column 3, advises him that "blast media such as ... are generally classified as to particle size by US standard size sieves", and having regard more particularly to the prior art on sodium carbonate, US 4 174 571, column 4, and US 4 412 402, bottom of column 6, disclose:

"Although the particle size is not critical, it is preferred for most purposes to employ screened particles of sizes passing through screens in the range from about 140 to 200 mesh".

US 4 214 871 also mentions "sieve sizes" (column 3, lines 62 to 64, and column 4, line 7).

Thus, the skilled person can also directly derive from these citations that the determination of the particle sizes in the patent in suit is likewise made by sieving, in view of the fact that the patent refers to these documents when disclosing the aim of the present invention.

2.6. For all these reasons, the disclosure of the patent in suit is considered to be sufficient to enable the skilled person to carry out the claimed invention (Article 100(b) EPC).

3. Inventive step

3.1. According to the citation D3, an abrasive blasting medium was marketed prior to the priority date of the patent in suit, said medium consisting of sodium bicarbonate particles having an average size within the range of about 65 to 70 microns, in admixture with 0.5% by weight of a hydrophobic silica flow aid. This abrasive medium was sold for use in laboratory scale miniature abrasive blasting equipment (see in this respect D6) employed for cleaning and debarring electronic printed circuit boards, one requirement of this equipment being the provision of a very dry and pressurized air stream.

This prior art product represents the closest prior art.

3.2. An object of the present invention is to improve this blasting medium so that it can be used on large scales in a natural environment, that it to say in a process employing compressed air streams saturated with moisture, applied for example for removing coatings of sensitive surfaces, such as the exterior surfaces of modern aircraft.

The patent in suit solves this problem by mixing bicarbonate particles having particle sizes within the range of 250 to 500 microns with the hydrophobic silica flow/anti-caking agent (claim 6). Other advantages, such as the flow characteristics, the caking resistance, the long-term storage stability and a more efficient removal of coatings, are obtained. Test results as to these last two properties were filed by the respondent, (see D3), at least in the particle size range of 250 to 300 microns. The appellant has disputed the evidence provided by these tests, but he has provided no evidence that they were wrong.

3.3. Even if the only distinguishing feature of the independent product claim 6 vis-à-vis the closest prior art is the claimed range of particle sizes, that does not prevent the solution from being a combination of these "large" particles (compared to those according to D3) with the hydrophobic silica anti-caking/flow agent. The appellant himself has in fact recognised this combination of means by arguing that, for a skilled person who wishes to improve the long-term storage stability of the blasting media known from D3, it is obvious to use larger particles in combination with the anti-caking agent, since the ratio surface/volume is better (lower specific surface).

As far as obviousness is concerned, he has however provided no evidence in support of this argument, so that it can only be seen as the result of an a posteriori view.

3.4. The use of bicarbonate particles having the claimed particle sizes has been described in none of the cited documents. A record of the cited prior art shows that citation D6 mentions a range of 20 to 150 microns for bicarbonate as blasting medium, said range including the range 65 to 70 microns of the closest prior art according to D3. For fire-fighting preparations, D9 discloses a range lower than 251 µ for the material sodium bicarbonate. In D15, samples of sodium bicarbonate powders used for surface treatment were examined as to their properties; The measured size range of the particles were between 62 (or 78) microns and 215 (or 275) microns, the obtained results differing according to the measurement method used, namely the ROTAP method, which is a screening method (see D12), for the first given results, and a laser method for the results in brackets. From this whole record, it appears that the general tendency was to use sodium bicarbonate powders with particle size ranges lower than 250 microns. The present invention goes against this trend.

3.5. The appellant has pointed out that, in the citation D5, Table 9 on page 91, most of the abrasive media used for dry blasting non ferrous metals as non-metallic materials are given as having particle sizes about 300 microns (standard screen size 50). In the mentioned table, however, said size level is only related to sand as abrasive material, and not to sodium bicarbonate. Because of their quite different hardnesses, these two materials cannot be compared to each other.

The appellant also argued that it was well known that the particle size has an effect on the production rate and on the surface finish, as indicated by D4, page 4, and that the most suitable particle size can easily be selected by means of routine tests. Document D5, pages 85 and 86, was also mentioned. This argument is not convincing, since D4, as well as D5, teaches that:

(i) "The smaller the abrasive particle, the finer the surface finish and the greater the surface coverage".

(ii) "The larger the abrasive particle, the greater the impact".

Having in mind that sodium bicarbonate had been selected as abrasive material because of its softness, it would appear inconsistent to want to increase the impact and, thus, to choose large particles. The person skilled in the art, who wants to increase the performance of the abrasive particles, would on the contrary be incited to select smaller particles, since the surface coverage is greater, so that the blasting is more efficient. Thus, D4 and D5 give the skilled person rather an incentive to try to use fine particles.

3.6. Consequently, the Board concludes that the appellant has not established that there was any suggestion in any of the cited prior art documents that the blasting medium as claimed in claim 6 of the patent in suit would be an improved abrasive medium, whatever the aim of that improvement might be.

Therefore, the subject-matter of said claim 6 implies an inventive step.

3.7. Since claim 1 concerns a process requiring the use of the product according to claim 6, it is necessarily patentable.

Moreover, no citation, among those cited, suggests using the blasting medium according to claim 6 in an air stream, which is saturated with moisture. As seen above, the closest prior art, namely D3, requires a very dry air for a mixture of sodium bicarbonate particles with an anti-caking agent. D6, which relates to the blasting device for the blasting medium according to D3, confirms this requirement. Citation D5, which is a handbook on abrasive blast cleaning and provides a rather exhaustive teaching on the subject, also insists on the necessity of dry air, in particular with portable air blasting methods; sodium bicarbonate is not mentioned in this citation, but the requirement is to be expected higher with this material, since its tendency to cake is well-known.

In the absence of any suggestion in the prior art to operate without the use of dry air, the method of claim 1 comprises an inventive step.

4. Dependent claims 2 to 5 concern particular embodiments of the method claimed in claim 1, whereas dependent claims 7 to 9 concern particular embodiments of the blasting medium according to claim 6. Therefore, they can likewise be maintained.

Order

ORDER

For these reasons it is decided that:

The appeal is dismissed.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility