Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    EPO TIR study-PV-web-720 x 237

    Technology insight report on advances in photovoltaics

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventors Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • Technologies
      • Innovation actors
      • Policy and funding
      • Tools
      • About the Observatory
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
    • Go back
    • New to patents
  • New to patents
    • Go back
    • Your business and patents
    • Why do we have patents?
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Is it patentable?
    • Are you first?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • Core activities
          • Stories and insights
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • Technologies
        • Go back
        • Overview
        • Innovation against cancer
        • Assistive robotics
        • Space technologies
      • Innovation actors
        • Go back
        • Overview
        • Startups and SMEs
          • Go back
          • Overview
          • Publications
        • Research universities and public research organisations
      • Policy and funding
        • Go back
        • Overview
        • Financing innovation programme
          • Go back
          • Overview
          • Our studies on the financing of innovation
          • EPO initiatives for patent applicants
          • Financial support for innovators in Europe
        • Patents and standards
          • Go back
          • Overview
          • Publications
          • Patent standards explorer
      • Tools
        • Go back
        • Overview
        • Deep Tech Finder
      • About the Observatory
        • Go back
        • Overview
        • Work plan
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2024
          • Go back
          • Overview
          • Executive summary
          • Driver 1 – People
          • Driver 2 – Technologies
          • Driver 3 – High-quality, timely products and services
          • Driver 4 – Partnerships
          • Driver 5 – Financial Sustainability
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0563/95 12-03-1998
Facebook X Linkedin Email

T 0563/95 12-03-1998

European Case Law Identifier
ECLI:EP:BA:1998:T056395.19980312
Date of decision
12 March 1998
Case number
T 0563/95
Petition for review of
-
Application number
86108521.5
IPC class
D01F 6/04
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 919.5 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution

Applicant name
AlliedSignal Inc.
Opponent name
Stamicarbon bv
Board
3.3.03
Headnote
-
Relevant legal provisions
European Patent Convention Art 84 1973
European Patent Convention Art 123(2) 1973
Keywords

Novelty - (yes) - no implicit disclosure of undisclosed property

Inventive step - (yes) - critical parameter not considered in the prior art

Catchword
-
Cited decisions
T 0198/84
T 0026/85
T 0301/87
T 0279/89
T 0511/92
Citing decisions
-

I. European patent application No. 86 108 521.5 in the name of ALLIED CORPORATION, which had been filed on 23. June 1986, claiming priority from a US application filed on 19 August 1985, resulted in the grant of European patent No. 212 133 in the name of ALLIED-SIGNAL INC. on 18 April 1990 on the basis of 25 claims.

Independent Claim 1 read as follows:

"1. A method to prepare high strength, high modulus polyolefin shaped articles comprising forming a heated solution of said polyolefin from particles of which about 75 to about 100% by weight have a particle size of from about 100 to about 400 microns and having a weight average molecular weight of from about 300,000 to about 7,000,000, then shaping said heated solution, then cooling said shaped solution."

Claims 2 to 25 were dependent on Claim 1.

II. Notice of Opposition was filed by STAMICARBON BV on 18. January 1991 requesting revocation of the patent in its entirety, on the ground(s) that the claimed subject-matter lacked novelty and/or inventive step.

In the course of the opposition proceedings the Proprietor submitted two new sets of claims as Main Request and Auxiliary Request. As compared to the version as granted, Claim 1 of both requests comprised the feature "at least 40% of the particles being retained on a No. 80 mesh screen (0.177mm) when the polymer has an intrinsic viscosity above 15"; Claim 1 of the Auxiliary Request was furthermore restricted by the feature "the particle size being evenly distributed in a bell-shaped curve of particle sizes centered at 125 to 200 micrometers for polymer having an intrinsic viscosity above 15 and between 100 and 150 micrometers for polymer having an intrinsic viscosity below 15".

III. By its decision announced orally on 5 April 1995 and issued in writing on 4 May 1995 the Opposition Division revoked the patent in suit.

The decision under appeal held that the subject-matter of Claim 1 of the Main and Auxiliary Requests was novel but did not involve an inventive step. As to novelty, the Opposition Division found that the available evidence concerning the particle size distributions of the ultrahigh molecular weight polyethylenes Hercules UHMW 1900 and Hizex Million 240M, respectively used according to documents

D1: EP-A-64 167 and

D3: EP-A-135 253,

could not unequivocally establish that these products met the respective requirements of the Claims 1 of these requests. Since it was, however, established that Hercules UHMW 1900 usually met the particle size distribution specified in Claim 1 of the Main Request for polyolefins having an intrinsic viscosity above 15, and since, according to D1, Hercules UHMW 1900 could be spun to high quality fibers, the skilled person was highly likely to use these commercial polymers irrespective of their particle size distribution characteristics. The latter property could not, therefore, confer inventivity on the subject-matter of Claim 1 of the Main Request. The same obviousness conclusion also applied to the particle size distribution curves specified in Claim 1 of the Auxiliary Request, because these would not be different from those of several prior art ultrahigh molecular weight polyolefins.

IV. Notice of Appeal against the above decision was filed by the Proprietor (Appellant) on 4 July 1995. The fee for the appeal was paid on the same day and the Statement of Grounds of Appeal was submitted on 4. September 1995.

The Appellant supplemented his case in submissions dated 12 February 1998 and 6 March 1998 as well as during oral proceedings held on 12 March 1998.

In the course of the latter the Appellant filed a new Main Request comprising 19 claims, independent Claim 1 reading as follows:

"1. A method for preparing high strength, high modulus polyethylene shaped articles comprising forming a heated solution of said polyethylene from particles of which 75 to 100% by weight have a particle size of from 100 to 400 microns, at least 40% of the particles being retained on a No. 80 mesh screen (0.177mm), said polyethylene having a weight average molecular weight of from 300,000 to 7,000,000 and an intrinsic viscosity above 15 and up to 19, then extruding said heated solution, then cooling and stretching said shaped solution."

Claims 2 to 19 of the Main Request are dependent on Claim 1.

Apart from the afore-mentioned Main Request, the Appellant submitted on 12 February 1998 a First Auxiliary Request, and on 6 March 1998 Second, Third, Fourth and Fifth Auxiliary Requests.

V. The written and oral arguments of the Appellant may be summarized as follows:

(i) Claim 1 of the Main Request complied with the requirements of Article 123(2) EPC and Article 84 EPC. Although there was a literal inconsistency between the lower limit of 300,000 of the molecular weight and the lower limit of 15 of the intrinsic viscosity, because said viscosity value corresponded to a much higher molecular weight than 300,000, factually an inconsistency did not exist when the whole specification was taken into account.

(ii) The subject-matter of Claim 1 was novel over the cited prior art, particularly over document D1, because the reworking of the disclosure of D1 would fail to inevitably lead to an infringement of said subject-matter (see also the subsequent arguments concerning inventive step).

(iii) The Opposition Division was wrong when it concluded that the solution of the existing problem, i.e. to overcome the processing difficulties encountered when extruding ultrahigh molecular weight polyolefins and to provide a consistent high product quality, lay in the mere use of the commercial polymer Hercules UHMW 1900 as specified in D1. This commercial polymer comprised lots (e.g. No. 90296 and No. 90170: see below) that did not meet the particle size distribution requirements of the patent in suit, as was apparent from

- Evidence P1, a letter from Lloyd A. Hudson of Himont to G. Weedon of Allied Corporation, dated 26 September 1984, referring to lot No. 90296,

and from

- Enclosure 1 of the Respondent's opposition letter dated 18 January 1991, a telex of D. Koch of Himont to Mr Kirschbaum of DSM, dated 20 August 1984, referring to lot No. 90170.

Since there was no information in D1 or in any of the other prior art documents that the existing problem could be solved by the selection of the claimed particle size distribution, this feature conferred inventive step on the subject-matter of Claim 1.

(iv) In support of his argument that the commercial product used according to the patent in suit, i.e. Hifax 1900 from Himont, caused serious difficulties when scaling up the process from laboratory to plant scale, the Proprietor submitted the following further pieces of evidence:

P7: Confidentiality agreement between Himont Inc and AlliedSignal Inc, dated 15 September 1984,

P8: Declaration of Gene C. Weedon, dated 11. February 1998, amended by a "Supplementary Declaration" dated 11 March 1998,

P9: Declaration of Lloyd A. Hudson, dated 11. February 1998,

P10: Internal Memorandum from T.Y. Tam to G.C. Weedon, dated 29 January 1985, with Tables I & II attached,

P11: Declaration of James J. Dunbar, dated 22 May 1989,

P12: Modern Business Statistics, Freund & Williams, Prentice-Hall Inc, 1956, pages 145 to 149.

VI. The arguments of the Respondent (Opponent) may be summarized as follows:

(i) Concerning the literal inconsistency between the lower limits of molecular weight and intrinsic viscosity in Claim 1 of both requests (cf. point V(i) supra), the Respondent contended that this obscured the scope of these claims.

(ii) As to the issue of novelty, the Respondent's reasoning was twofold:

- in first place, he argued that the polymer Hercules UHMW 1900 used according to D1 normally met the particle size distribution requirements of Claim 1 of the patent in suit, and that, therefore, it was beyond reasonable doubt that the disclosure of D1 anticipated the claimed invention; at least would the skilled person "seriously contemplate" to use polymer lots that had the claimed particle size distribution, thus meeting the anticipation criterion set out in T 26/85 (OJ EPO 1990, 22),

- in second place, the Respondent relied on the fact that the claimed invention amounted to a non-novel selection from the disclosure of D1, because it did not meet two out of three criteria established in T 198/84 (OJ EPO 1985, 209) and T 279/89 of 3 July 1991 (not published in the OJ EPO), namely those that the selected sub-range should be narrow and sufficiently far removed from the preferred part of the known range of the prior art.

(iii) Concerning the issue of inventive step, the Respondent contended that the particle size distribution feature of the patent in suit was of importance only for the Appellant's particular process and equipment, but not for any process coming under the definition of the method as claimed.

From the fact that Table I of the patent in suit comprised the originally "inventive" lots No. 3 and 10, which had substantially the same particle size distribution, but from which only lot No. 10 fell under the restricted scope of Claim 1 of the now Main Request, it could be concluded that the selection of the particle size distribution was not sufficient for the success and that an essential feature must be missing in the definition of Claim 1.

Thus, the particle size distribution alone did not amount to a critical selection and could not contribute to an inventive step.

The process of D1 rendered fibers of excellent quality and one skilled in the art had every reason to expect similar results when using polymers whose particle size distribution fell within the ranges specified in Claim 1 of the Main Request. The subject-matter of this Claim 1 was therefore obvious over document D1.

VII. The Appellant requested setting aside of the appealed decision and maintenance of the European patent No. 212 133 on the basis of the Main Request submitted during oral proceedings, on the basis of the First Auxiliary Request submitted on 12 February 1998, or on the basis of the Second, Third, Fourth or Fifth Auxiliary Requests all submitted on 6 March 1998.

The Respondent requested dismissal of the appeal.

1. The appeal is admissible.

Main request

2. Article 123(2) and (3) EPC

Claim 1 is fairly based on the application as filed, particularly on its Claims 1, 8 (polyethylene), 12 (intrinsic viscosity above 15 and up to 19), 16 (at least 40% of the particles on a No. 80 mesh screen) and 21 (stretching). The feature "extruding" in lieu of "shaping" the heated solution is based on page 3 (line 9), page 8 (line 7), page 10 (Table V) and page 11 (line 22) of the application as filed.

Apart from necessary adaptations to Claim 1, the dependent Claims 2 to 19 correspond to the following claims in the application as filed (the latter after the colon):

- Claims 2 to 7: Claims 2 to 7,

- Claims 8, 9, 10, 11: Claims 10, 11, 14, 15,

- Claims 12 to 15: Claims 17 to 20,

- Claims 16 to 19: Claims 22 to 25.

The amendments introduced into Claim 1 restrict the scope of the claims as granted - which were identical to those as filed - and do not, therefore, extend the protection beyond that of the patent as granted.

The requirements of Articles 123(2) and (3) EPC are therefore met by the claims of the Main Request.

3. Novelty (Article 54 EPC)

3.1. Document D1

This citation (cf. Claim 1) relates to a process for producing high strength, high modulus shaped thermoplastic articles of substantially indefinite length which comprises the steps:

(a) forming a solution of a thermoplastic crystalline polymer having a weight average molecular length between 7 x 104 and 71 x 104 backbone atoms (e.g. polyethylene, polypropylene) in a first nonvolatile solvent,

(b) extruding said solution,

(c) cooling below a temperature at which a rubbery gel is formed,

(d) extracting the gel with a second volatile solvent,

(e) drying the gel to form a xerogel; and

(f) stretching the gel containing the first and/or second solvent, and/or the xerogel.

According to Example 2 the linear polyethylene Hercules UHMW 1900, having an intrinsic viscosity of 17, is used.

There is no information in D1 as to the particle size distribution of this polymer. But apart from this property all other features of Claim 1 of the Main Request are met.

3.1.1. During the first instance opposition proceedings the Proprietor, in order to establish that Hercules UHMW 1900 did not inevitably have the particle size distribution required by Claim 1, submitted on 3. September 1991 as

Evidence P1 a letter of Himont, Mr Hudson, to Allied, Mr Weedon, dated 26 September 1984.

P1 reports i.a. the particle size distributions of nine "1900R UHMW" lots, which - as is apparent from a comparison of the respective data - are identical to lots 1 to 9 of Example 1, Table I of the patent in suit. There was agreement between the parties that these lots are indeed lots of Hifax 1900, and there was also agreement that the tradenames Hifax 1900 and Hercules UHMW 1900 designate the same products.

While, because of the too high intrinsic viscosity of all these nine lots (lying between 21 and 30) they are beyond the scope of Claim 1 of the Main Request, which requires the intrinsic viscosity to be above 15 and up to 19, the particle size distribution of these lots nevertheless provides valuable information about the variation of this property of Hifax 1900, irrespective of the intrinsic viscosity.

All the nine Hifax 1900 lots referred to in P1, save lot 90256 (= lot 4 in Table I of the patent in suit), meet the two particle size criteria of Claim 1. However, with only 26.5% (6.5% on No. 60 mesh plus 20% on No. 80 mesh), lot 90256 fails to meet the "over 40% on No. 80 mesh" criterion of Claim 1; whether this lot meets the "75% between 100-400 microns" criterion cannot be decided with certainty, because there is no data for a 100 microns sieve (only for 200 mesh = 74 microns). Since the amount retained on the 200 mesh sieve was 55.9%, and since according to the lower graph in Evidence P-2C, submitted by the Proprietor on 3. September 1991, the particle size distribution curve of lot 90256 is highly assymetric it, however, appears that this criterion is also met by said lot.

On the basis of the information contained in P1, in conjunction with Table I of the patent in suit, it must thus be concluded that it is not certain that the polyethylene Hercules UHMW 1900 used according to Example 2 of D1 had the particle size distribution characteristics required by Claim 1 of the Main Request.

3.1.2. The reasons to follow the opposite opinion, defended by the Respondent on the basis of the arguments (i) to (iv), cannot be accepted.

These arguments were,

(i) that lot 90256 of P1 was to be disregarded as a non-representative lot,

(ii) that document

D2: G. B. McKenna et al. "Deformation and Failure of Ultra High Molecular Weight Polyethylene" in Technical Papers SPE, Vol. XXVII, 1981, 82-84

(submitted together with the Notive of Opposition)

showed that the particle size of Hercules UHMW 1900 powder generally ranged from 80 microns to 300 microns,

(iii) that absolute certainty was not the correct novelty criterion, and

(iv) that the choice of the particle size distribution made according to Claim 1 amounted to a non-novel selection.

3.1.2.1. Concerning the afore-mentioned point (i) the Respondent relied on

Evidence P2A and P2B, submitted by the Proprietor on 3. September 1991 (pages 1 and 2 of a Memorandum, dated 18. September 1984, of Mr T. Y. Tam of Allied Fibers & Plastics to Mr Weedon),

according to which lot 90256 was admitted by the supplier Himont to be an "unacceptable transition product" (cf. P2A, paragraph in midddle of page) which, by the customer Allied (i.e. the Proprietor) should be "returned for credit" (cf. P2B, point 6).

However, on page 4, 3rd paragraph of his Declaration P8 Mr Weedon of Allied stated:

"This product was referred to as "transitional" since it was produced during the transition production time between lots of differing molecular weight. As such, there was no mistake in Himont sending this polymer to Allied initially as a lot to be evaluated. It was subsequent to this evaluation that Himont and Allied both realized that this "transitional" product should not be included in subsequent Allied orders. Himont was gracious enough to not charge Allied, Himont's good customer, for a bad lot of polymer discovered during evaluations subsequent to a plant shut down."

In the Board's judgment, this statement of Mr Weedon is convincing, because it is in agreement with the two facts

- that lot 90256 was delivered by Himont to Allied as a "normal" Hifax 1900 lot, and

- that lot 90256 exihibited an unsatisfactory performance only with respect to Allied's new development,

and is also in line with what can be supposed to be "the reality" of a normal supplier/customer relationship during the initial stages of a new development, where the supplier, in hope of future sales, is prepared to share to some extent the customer's risk (here by not charging for an unsatisfactory lot).

Hence, it cannot be concluded from evidence P1 that the polymer Hercules UHMW 1900 used according to D1 - let alone lots thereof having an intrinsic viscosity within the range specified in Claim 1 of the Main Request ("above 15 and up to 19") - inevitably must have had the particle size distribution characteristics required by Claim 1 of the Main Request.

3.1.2.2. The same conclusion applies with respect to document D2, because there (page 82, left-hand column, last paragraph) the particle size of Hercules UHMW 1900 is only defined by the statement "The sizes generally range from 80 µm to 300 µm". This range, although largely overlapping with that according to Claim 1 of the Main Request (100 to 400 microns), fails to specify whether the amount of particles within the 100 to 400 microns range is above 75% by weight and whether at least 40% by weight of the particles is retained on a No. 80 mesh sieve.

Thus, also D2 does not contain sufficient information to allow the conclusion that the polymer Hercules UHMW 1900 used according to D1 inevitably must have had the particle size distribution characteristics required by Claim 1 of the Main Request.

3.1.2.3. Furthermore, the Respondent's argument that absolute certainty was not the just criterion for novelty (cf. 3.1.2 (iii) supra), is also unconvincing. It is well established practice of the Boards of Appeal that in order to be novelty anticipated the claimed subject-matter must be directly and unambiguously derivable from the prior art (cf. T 511/92 from 27 May 1993, not published in the OJ EPO). In the present case, although the probability may be high that Hercules UHMW 1900 used according to D1 meets the particle size distribution characteristics required by Claim 1 of the Main Request, there remains a distinct margin of uncertainty. In order to overcome this insufficiency, the Respondent sought to rely on the criterion "whether the person skilled in the art would in the light of the technical facts seriously contemplate applying the technical teaching of the prior art document in the range of overlap", as argued in point 9 of the Reasons of T 26/85 (cf. supra). However, this criterion was used in that decision in connection with a completely different situation, where the prior art expressly contained a reasoned statement dissuading the person skilled in the art to work in the range of overlap, when envisaging the specific application of the invention there under discussion (cf. point 13 of the Reasons). This situation is completely different from the present one, where the important feature of the particle size distribution is not even mentioned or suggested in D1. Thus, the skilled person was not in a position to "seriously contemplate or not" a certain selection of the particle size distribution.

3.1.2.4. Also the Respondent's last argument (cf. point 3.1.2 (iv) supra) fails, namely that the claimed invention amounted to a non-novel selection from the disclosure of D1, because it did not meet two out of three criteria established in T 279/89 (cf. supra) and T 198/84 (cf. supra), namely those that the selection should be narrow and sufficiently far removed from the preferred range of the prior art (cf. Section VI (ii) supra). While it may be true that quite a high percentage of Hifax 1900 (respectively Hercules UHMW 1900) lots meets the particle size distribution characteristics of Claim 1, this is not a relevant fact here.

Since the feature "particle size distribution" was not disclosed or at least suggested in the prior art to be a parameter which was at disposal, this feature did not amount to a "selection". Hence the criteria for the novelty of a "selection invention" set out in the aforementioned decisions do not apply here.

3.1.3. In an attempt to show that the particle size distribution of Hifax 1900 sold by Himont before the priority of the patent in suit met the requirements of Claim 1, the Respondent with his Notice of Opposition had filed

Enclosure 1, which is a copy of a telex, dated 20. August 1984, from Himont (the manufacturer of Hifax 1900) to DSM, Mr Kirschbaum.

Therein four lots are identified: 90160 (polymer "1900", intrinsic viscosity: 25); 90170 (polymer "1900 cm", intrinsic viscosity: 30); 90257 (polymer "hb312", intrinsic viscosity: 19) and 90281 (polymer "hb301", intrinsic viscosity: 12). From these lots only lot 90160 is designated as "proper" polymer (Hifax) "1900"; lot 90170 is also a Hifax "1900" lot but, as indicated by the letters "cm", modified to a certain extent. According to the Appellant, and not contested by the Respondent, the modification concerns the presence of small amounts of sodium stearate as mold release agent.

Because of their too high intrinsic viscosity, both these lots are beyond the scope of Claim 1 of the Main Request, which requires the intrinsic viscosity to be above 15 and up to 19.

Notwithstanding, the particle size distributions of these lots provide valuable information about the variation of this property of Hifax 1900.

The following particle size distributions are indicated in Enclosure 1:

mesh...microns....lot 90160 / 1900...lot 90170 / 1900 cm

18........................0..................0

40....400(42 mesh)........0.2................0.2

60....250................13.1...............20.0

80....177................70.5...............16.9

100...149................12.3...............15.7

200....74.................4.0...............46.4

pan.......................0..................0.8

Since the sum of the amounts retained on the 60, 80 and 100 mesh screens corresponds to the amount of particles having a size in the range of 100 to 400 microns, the feature of Claim 1 specifying that 75 to 100% of the particles should lie within the latter range is met by lot 90160 (said sum being 95,9%), but not by lot 90170 (said sum being 52,6%).

Similarly, the condition of Claim 1 that at least 40% of the particles be retained on a No. 80 mesh screen (corresponding in the present case to the sum retained on the 40, 60 and 80 mesh screens) is met by lot 90160 (the sum being 83,8), but not by lot 90170 (the sum being 37,1%).

In the Board's judgement, the difference in the particle size distributions of lots 90160 and 19170 demonstrates that it cannot be taken for granted that all lots of Hifax 1900 sold by Himont had the particle size distribution required by Claim 1 of the Main Request.

While the presence of a mold release agent in lot 19170 may have some influence on this property, it is highly unlikely that it is responsible for changes which caused the particle size distribution characteristics to be as far off the requirements of Claim 1 as they are (52,6% within the range of 100 to 400 microns, as compared to the lower limit of 75% according to Claim 1; 37,1% retained on a No. 80 mesh screen, as compared to the lower limit of 40% according to Claim 1).

Even if Enclosure 1 would thus be considered to represent typical qualities of the material Hercules UHMW 1900 used according to document D1, which is by no way established, this Enclosure 1 would not be able to prove that this polymer - let alone lots thereof having an intrinsic viscosity within the range specified in Claim 1 of the Main Request ("above 15 and up to 19") - must have had the particle size distribution characteristics specified in Claim 1 of the Main Request.

3.2. Document D3

This citation relates to a process for producing solutions in certain organic solvents of ultrahigh molecular weight ethylene polymers or copolymers having an intrinsic viscosity of at least 51 dl/g (cf. Claim 1).

According to Example 5 (in combination with Example 1) a solution of Hizex Million 240M of an intrinsic viscosity of 17 dl/g in decalin was spun through a spinning die, cooled, solidified and stretched (cf. page 2, lines 5 to 11; page 24, lines 18 to 30).

There is no information in D3 as to the particle size distribution of this polymer. However, both the Respondent (on page 6 of the Notice of Opposition) and the Appellant in his Evidence P6 (letter from Mitsui Petrochemicals (America), Ltd. dated 16 January 1992 to Mr Weedon, Allied Fibers) submitted relevant information concerning this property.

According to the sieve analysis from April 1983 reported on page 6 of the Notice of Opposition 98.9% by weight (= 98.3% retained on 125 µm sieve plus 0.6% retained on 250 µm sieve) of the particles of Hizex Million 240M were between 100 and 400 µm, thus meeting the respective requirement of Claim 1 (above 75%); however, there is no information in the sieve analysis concerning the amount of particles retained on a No. 80 mesh screen (= 177 µm).

According to page 1 of Evidence P6 96,7% by weight of the particles of (Hizex) Million 240M are retained on the sieves No. 80 (= 177 µm; 25.2%), No. 100 (= 149 µm; 57.1%) and No. 170 (= 88 µm; 14.4%). The requirement of Claim 1 of the Main Request that more than 75% of the particles range between 100 and 400 microns thus appears to be met. However, the other requirement, that more than 40% be retained on a No. 80 mesh sieve, is not met, since this amount is only 25.2%.

There was some confusion concerning the interpretation of page 2 of Evidence P6, allegedly a graphical representation of the particle size distribution results of lot 12123, the same lot whose particle size distribution was reported on page 1 of the same evidence P6. While this graph, when taken at face value, seems to show a particle size distribution which meets both conditions of Claim 1, the Proprietor, in his submission of 12 February 1998, stated (uncontested by the Respondent) that this graphical representation was misleading and that the sieve analysis reported on page 1 of P6 was correct.

Irrespective of the afore-mentioned ambiguity, it must be concluded that the available evidence fails to prove that Hizex Million 240M used according to D3 met the particle size distribution requirements of Claim 1 of the Main Request, particularly the feature that at least 40% of the particles should be retained on a No. 80 mesh screen.

3.3. The subject-matter of Claim 1 of the Main Request is therefore novel over both, documents D1 and D3.

4. Inventive step (Article 56 EPC)

4.1. Closest prior art

Document D1 (cf. point 3.1 supra) discloses a process for the preparation of fibers from ultrahigh molecular weight polyethylene which differs from the subject-matter of Claim 1 of the Main Request only by the lacking characterization of the particle size distribution of the Hercules UHMW 1900 polymer.

4.2. Problem to be solved

According to page 2, lines 30 to 33 and 45 to 46 of the patent specification the claimed invention was concerned with the preparation at high rates of uniform solutions of ultrahigh molecular weight olefin polymer, which can be shaped by extrusion to i.a. fibers, films or tapes, which do not break upon drawing (cf. Example 1, page 12 to 16 and page 6, Table V, "Comments"). From the results reported for lots No. 1 to 11 in Table I, page 3 and on page 4, lines 12 to 23 it can be inferred that the problem of fiber breakage is related to the particle size distribution; in particular lots No. 4 and 11 show that a high percentage of fine particles with less than 40% of the particles retained on a No. 80 mesh sieve caused yarn breakage upon drawing (see also Table V on page 6). Similarly, lot 8, which exhibited 42% of the particles retained on a No. 80 mesh sieve, was only marginally operable because of individual fiber breakage.

In his submissions the Proprietor repeatedly stressed the importance of the particle size distribution for the avoidance of processing difficulties, in particular fiber breakage. To that end he filed the Declaration P8 (page 3, last paragraph) which reported the severe problems encountered by the inventors of the patent in suit when using "polyethylene polymer particles of the same average particle size, molecular weight and viscosity, manifested in a plant shutdown due to occasional plugging of the polymer dissolving transfer lines or breakage of the spinning pumps and more often broken filaments within a bundle of filaments or breakage of the entire bundle."

When starting from the teaching of document D1, the problem underlying the subject-matter of Claim 1 of the Main Request was thus the development of a reliable process for the manufacture of extruded articles, particularly fibers, from ultrahigh molecular weight polyethylene, which process avoids breakage of the fibers upon drawing.

4.3. Solution of the problem

According to Claim 1 of the Main Request the afore-mentioned problem is to be solved by the use as starting polymer of an ultrahigh molecular weight polyethylene powder with 75 to 100% by weight of the particles having a particle size of from 100 to 400 microns and at least 40% of the particles being retained on a No. 80 mesh screen (0.177 mm).

The Board is satisfied by the results reported for Lots No. 1 to 11 of Table I (page 3 and page 4, lines 12 to 23; page 6, Table V) that the existing technical problem has effectively been solved by this selection of the particle size distribution. These results demonstrate in particular the importance for the problem to be solved (which importance was contested by the Respondent) of the feature in Claim 1 that at least 40% of the particles be retained on a No. 80 mesh screen (cf. first paragraph of preceeding Section 4.2).

4.4. Obviousness

There is no information in D1 or in any of the other prior art documents that the existing problem can be solved by the choice of the claimed particle size distribution. Therefore, this feature is able to confer inventive step on the subject-matter of Claim 1.

4.4.1. This conclusion is not invalidated by the following arguments of the Respondent.

4.4.1.1. Firstly, the Respondent contended that the particle size distribution feature according to the patent in suit was of importance only for the Appellant's particular process and equipment and that, thus, the conclusion of non-obviousness would not extend to the entire scope of Claim 1 of the Main Request.

In the absence of any supporting evidence this argument must be dismissed as a mere unfounded allegation. The critical importance of the particle size distribution was under discussion right from the beginning of the opposition proceedings in 1991 and there was plenty of time for the Respondent to develop this objection, which, however, was only brought forward during the oral proceedings before the Board, unsupported by any evidence.

4.4.1.2. Secondly, the Respondent argued that the satisfactory performance of polymer lots, which comply with the particle size distribution requirements according to the patent in suit, could not be taken as an indication of the non-obviousness of the subject-matter of Claim 1. From the fact that lots No. 3. and No. 10 of Table I, both having a very similar particle size distribution, but the one (No. 3) being outside the scope of Claim 1 (because of the now restricted intrinsic viscosity range of Claim 1), performed in the same satisfactory way, it had to be concluded, the Respondent contended, that an essential feature was missing in Claim 1.

Apart from the fact that this is an objection under Article 84 EPC, which is not a ground of opposition and which may only be considered under Article 102(3) EPC if related to amendments which are necessitated by proper grounds of opposition (cf. T 301/87, OJ EPO 1990, 335), which does not appear to be the case here, this objection is anyway inconclusive, because it is not supported by the available evidence. While it is true that the particle size distribution of lots No. 3 and 10 in Table I of the patent in suit is very similar and that, therefore, such minor differences in the particle size distribution cannot explain their different processing behaviour, it is explicitely stated on page 4, lines 21 to 23 of the patent specification that the different processing behaviour "may be explained by the I.V. [intrinsic viscosity] difference, or by the fact that a nitrogen pressure blanket was used during processing of the lower I.V. particles." The person skilled in the art was, thus, aware that other parameters than those directly related to the essence of the invention - and which were within his general common knowledge - may influence the processing of high molecular weight polyethylene.

4.4.1.3. The last argument of the Respondent was that on which the decision under appeal relied, namely that the subject-matter of Claim 1 of the Main Request did not involve an inventive step, because, in view of the good results exhibited in D1, it was obvious to repeat the process disclosed in this document with the same polymer Hercules UHMW 1900.

This reasoning does not take account of an important aspect of the problem underlying the patent in suit, namely the development of a reliable process, i.e. a process which allows uninterrupted operation of a commercial process and can be carried out on industrial scale and which reliably yields products of high quality (no breakage) (cf. Section 4.2 supra, last paragraph).

There is no information in D1 concerning this aspect and it cannot be convincingly concluded that this requirement was met by D1 merely because it was not mentioned.

Rather Table I of the patent in suit and Evidence P1 demonstrate that different lots of ultrahigh molecular weight polyethylene 1900 (Hifax 1900 or Hercules UHMW 1900) behave differently, some of the lots (No. 4 and 11. in Table I) even providing unacceptable results. This was not denied by the Respondent. Document D1 was thus not able to offer a solution to the existing technical problem and the process according to Claim 1 of the Main Request provides a valuable contribution to the prior art which, therefore, involves an inventive step.

5. Dependent Claims

Owing to their dependency on Claim 1 Claims 2 to 19 of the Main Request stand in the same position, i.e. relate to novel and non-obvious subject-matter.

6. The claims of the Main Request, thus, comply with the requirements of the EPC.

7. Since the Main Request is admissible, there is no need to deal with the Auxiliary Requests.

Order

ORDER

For these reasons it is decided that:

1. The decision under appeal is set aside.

2. The case is remitted to the first instance with the order to maintain the patent on the basis of Claims 1 to 19 submitted as Main Request during oral proceedings, after amendment of the description.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility